A mesterséges háttérvilágítással kapcsolatos problémákat már a gyakorlatból ismerhetjük, kérdés hogy a természet nyújt-e valamilyen az éjszakai megfigyelésben használható lehetőséget? A körülöttünk folyamatosan jelenlévő elektromágneses sugárzásnak – mint amilyen a fény maga – azonban csak kis része esik a láthatósági tartományba nagyobb része láthatatlan és egyáltalán nem érinti a napszakok váltakozása.
Ilyen például a „Night glow” vagy éjszakai sugárzás, amely a Föld atmoszférája és a napszél egymásra hatásából eredő rövidhullámú (SWIR) 1200–1800 nm tartományba eső infravörös fény (1. ábra).
A látható (visible) fény tartománya: 400–70 nm, a (NIR) tartománya: 750–1050 nm, éjszakai sugárzás (SWIR) az 1200–1800 nm tartományba eső infravörös fény (1. ábra)
Ez a kültéri éjszakai környezetben mindenütt jelenlévő fény láthatatlan az emberi szem és a hagyományos biztonságtechnikai kamerák szilíciumalapú CCD- vagy CMOS-érzékelői számára. Az atmoszférikus SWIR-fény természetes, sőt ingyenes fényforrás lenne az éjszakai megfigyelés számára, de az említett okok miatt egyedi képátalakító szenzort igényel. A kezdeti próbálkozások InGaAs-anyagú érzékelőkkel kizárólag hibridtechnológiával előállítható drága eszközöket eredményeztek, amelyek érzékelése, a látható tartomány határára drámaian csökkent, így azok nappali fényviszonyok között nem használhatók.
Ez az a pont, ahol belép a képbe a TriWave-technológia. A TriWave-technológiával előállított CMOS-képérzékelők frekvenciatartománya, érzékelő képessége a látható fényen túlnyúlva lefedi az MWIR- és SWIR-tartományt, olyan eszközt adva kezünkbe, amely egyaránt jól hasznosítható nappali és éjszakai fényviszonyok mellett (2. ábra).
A közös diagramon látható az atmoszférikus sugárzás és a különböző anyagú képérzékelő szenzorok spektruma. A diagram vízszintes tengelye a látható fénytartomány alsó (infra) tartományától a közeli (NIR) a rövid (SWIR) a közepes (MWIR) és a hosszúhullámú (LWIR) infrasugárzás jellemző hullámhosszáig van skálázva nm egységekben. A diagramon az adott hullámhosszhoz tartozó sugárzás „erőssége” illetve a különböző anyagú (szilícium/piros; InGaAs/sárga; germánium/kék) szenzorok „érzékenysége” vethető össze. Jól látható, hogy az atmoszférikus sugárzás színképét legjobban a Ge és InGaAs-anyagú érzékelők spektruma fedi, de a Ge-alapú átnyúlik a 400 nm alatti látható tartományba is. (2. ábra)
Ezt a különleges eredményt a CMOS-technológiához használt szilícium-alapanyag germániummal való adalékolásával érik el, amely kedvezőbb fizikai tulajdonságai miatt kiszélesíti a fényérzékelés spektrumát. A jól bevált CMOS-technológia pedig gazdaságosan, százasával ontja a megbízható és egyforma minőségű SWIR-érzékeny chipeket egyetlen szilícium hordozón. A technológiának köszönhetően a pixelméret is elég kicsi marad, így a megszokott érzékelő formátumok is elég nagy pixelszámot és képbontást engedélyeznek a kamera méretének, súlyának és a csatlakozó optikarendszer formátumának megőrzése mellett.
CMOS
Előnyök
A TriWave-technológia előnyei más technológiákkal szemben, hogy a ma hozzáférhetők egy része a láthatósági tartományban segédvilágítással, maradék környezeti fénnyel, az objektumok saját hősugárzásával, illetve – a TriWave-technológiához hasonlóan – a látható tartományon kívül eső infravörösspektrummal dolgoznak.
EMCCD-kamerák
A láthatósági tartományba eső hulladékfényből dolgozik az úgynevezett elektronsokszorozós EMCCD-kamera, amely jelentős teljesítménynövekedést könyvelhet el a tradicionális CCD-kamerákhoz képest, de meg sem közelíti a SWIR-kamerák által nyújtott lehetőségeket.
Hőkamerák
Figyelembe véve a szilíciumalapú kamerák korlátait, sokan a hosszú hullámú LWIR infratartományban dolgozó hőkamerákat vélik megoldásnak az éjszakai biztonságtechnikai alkalmazásokban. A bevezetőben említett okok miatt ezek karakterisztikus elemek alapján történő azonosításra nem, csak érzékelésre használhatók. Mindazonáltal nélkülözhetetlenek lehetnek a rossz látási körülmények közötti detektálásban vagy beltérben, gyakorlatilag nulla környezeti világítás mellett, ahol atmoszférikus fény híján a SWIR-kamerák sem használhatók. Jelentős hátrányuk, hogy az üvegen nem látnak át, így üvegelőlapos kameraházak, üvegalapú optika nem használható hozzájuk. Áruk még mindig elég magas – a csekély felbontás ellenére is – a bennük foglalt szabadalmi és licencdíjak valamint a különleges anyagú optikák miatt.
InGaAs alapú kamerák
Ez a kameratípus a láthatósági tartományon kívüli MWIR és SWIR közép- és rövidhullámú infratartományban dolgozik, de a spektrális érzékenységük drámaian leesik a 900 nm tartomány alatt, így nappali használatra nem alkalmasak. Előállítása a bonyolult hibridtechnológia miatt, meglehetősen költséges, és várhatóan az is marad.
Összegezve a jelenlegi kínálatot (4. ábra) a 24 órás általános videomegfigyelési feladatokra a látható és a SWIR-tartományban működő TriWave-kamerák tűnnek a legelőnyösebbnek. Kár, hogy az elérhető típusválaszték ma még meglehetősen szűkös, és az árak egyelőre nem igazolják az olcsó CMOS-tömegtechnológiát, de az újdonság varázsának elmúltával várhatóan ezek az eszközök is megfelelő választékban és értékarányos áron lesznek hozzáférhetők.
A három különböző típusú kamerakép összevetése balról jobbra: nagyérzékenységű kamerakép a látható tartományban, atmoszférikus fényérzékeny (SWIR) kamerakép, emittált hősugárzást érzékelő hőkamera képe. (4. ábra)
Ecsedi Ákos, Cameo Plus
info@cameoplus.hu