MIC Series 612 Thermal

Hőkamera és éjjel/nappali kamera közös, vandálbiztos házban

A MIC Series 612 Thermal modell 36× zoomos optikai, day/night kameramodult és a hűtés nélküli, 35 vagy 50 mm-es optikákkal rendelkező, nagy hullámhosszú infravörös termikus képalkotó egységet foglalja magában. Ezek a készülékek közös, vandálbiztos házban kaptak helyet. A kamera teljes sötétségben, ködben vagy hóban is csaknem négy kilométer távolságból érzékeli az objektumokat.

A MIC Series 612 kamera Bosch-féle szabványos vezérlőfelületű, ez megkönnyíti a kamera olyan rendszerekbe történő beépítését, amelyek már használják a cég felügyeleti termékeit. Az új vezérlőegység biztosítja a felhasználóknak, hogy pontosan alkalmazzák a kamera funkcióival és optikájával kapcsolatos utasításokat.
Szabványos vagy nagy felbontású termikus érzékelőkkel kapható MIC Series 612 kamera a legzordabb környezetekben is képes felvételeket készíteni, ideértve az ipari és a kormányzati alkalmazások széles skáláját, az igényes infrastruktúráktól kezdve egészen a közlekedés védelméig.

Az IK10 besorolású vandálbiztos és korrózióálló szerkezet egy IP 68/NEMA 6P érintésvédelmi osztályba tartozó, tanúsított alumínium házat foglal magában, és ez hosszú élettartamú szilikon törlővel rendelkezik. A víz és a por behatolásával szemben ellenálló kameraháznak köszönhetően zord körülmények között is védi a készüléket. A sorozat valamennyi kamerája fölszerelhető függőleges vagy fordított helyzetben is, ez nem veszélyezteti az IP/NEMA 6P besorolást. Ennek köszönhetően könnyen tervezhető a rendszer.

Forrás: Bosch
 

Átbocsátóképesség vizsgálata számítógépes modell segítségével

Átbocsátóképesség vizsgálata számítógépes modell segítségével

A kiürítést szimuláló számítógépes modellek használata egyes apró, de igen fontos részletek, tényezők vizsgálatára is felhasználhatók. Az átbocsátóképesség tényezőjének vizsgálata egyik ilyen fontos elem, amely a kiürítés gyakorlati számítása során komoly befolyással bír. Írásunkban 36 különféle forgatókönyvet (scenariót) modellezünk.

A 28/2011 (IX. 6.) BM rendelet az Országos Tűzvédelmi Szabályzat (OTSZ) kiadásáról ötödik melléklet XXVIII. fejezet 479. § (3) bekezdés meghatározza a kiürítés megengedett időtartamait, valamint a kiürítés első és második szakaszának számítását. A kiürítés számítására meghatározott képletekben mind az első és második ütemben az átbocsátóképesség vizsgálata során a k-tényezőre 41,7 fő/m   min értéket határoz meg a jogszabály, amely 25 fő 0,6 m szélességen történő áthaladását jelenti 1 perc alatt. A fejlett kiürítési modellek segítségünkre lehetnek egyes általános tényezők pontosítására. A Pathfinder kiürítési szimulációs program segítségével az átbocsátóképesség tényező vizsgálata érdekében az 1. ábra szerinti modell teret hoztuk létre.

 

 

Modelltér I. (1. ábra)

A modellezés során az ajtó átbocsátóképességet, majd lépcsőn történő le, illetve felfelé haladást vizsgáltam. A lépcső méreteknél az OTÉK-ban »253/1997. (XII. 20.) kormányrendelet az országos településrendezési és építési követelményekről« meghatározott értékeket alkalmaztuk. A lépcsőfok magasságok felvételénél az akadálymentes közlekedéshez szükséges 15 cm magas, az építészek által használt általános 16 és 17 cm magas, valamint a lakáson vagy üdülőegységen belüli, időszakos használatú építményszint (például tetőtér) vagy üzemi berendezés megközelítésére szolgáló 20 cm magas lépcső fokmagasságokat vittünk be a modelltérbe.
 

Ajtó átbocsátóképességének vizsgálata

A modellezés során a haladási sebesség és a nyílás szélesség viszonyát vizsgáltam. A felvett haladási sebességek 0,26 m/s, 0,5 m/s, 0,66 m/s és 1,2 m/s voltak.

 

   Ajtó átbocsátóképesség a haladási sebességek függvényében (2. ábra)

Ajtó átbocsátóképesség a haladási sebességek függvényében (2. ábra)

Ajtó átbocsátóképesség a haladási sebességek függvényében (2. ábra)

Ajtó átbocsátóképesség a haladási sebességek függvényében (2. ábra)

Ajtó átbocsátóképesség a haladási sebességek függvényében (2. ábra)

A 0,26 m/s haladási sebességnél 4-64 s, a 0,5 m/s haladási sebességnél 2-63 s, a 0,66 m/s haladási sebességnél 1-62 s valamint a 1,2 m/s haladási sebességnél 0-61 s értékek között történt a 25 fő áthaladása.

Lépcső átbocsátóképességének vizsgálata

A lépcső átbocsátóképesség vizsgálata 0,26 m/s, 0,5 m/s, 0,66 m/s és 1,2 m/s haladási sebesség, négy lépcső méret felvételével – 3. ábra – valamint lépcsőn fel és lefelé haladás figyelembevételével, 32 szcenárióval történt.

 

 

fokmagasság (cm) fokszélesség (cm)
15 30
16 30
17 28
20 23

Lépcsőméretek (3. ábra)

Felfelé haladó lépcső átbocsátóképesség vizsgálata

A modelltér mérete megegyezik a modelltér I. paramétereivel, kiegészülve egy 0,6 m széles egykarú 10 fokú felfelé haladó lépcsővel (4. ábra).

 

Modelltér II. (4. ábra)

 

Modelltér II. (4. ábra)

 

A kapott értékeket a 5-8. ábrák tartalmazzák.

 

 Lépcsők átbocsátóképesség 0,26 m/s haladási sebesség függvényében (5. ábra)

Lépcsők átbocsátóképesség 0,26 m/s haladási sebesség függvényében (5. ábra)

   Lépcsők átbocsátóképesség 0,26 m/s haladási sebesség függvényében (5. ábra)

Lépcsők átbocsátóképesség 0,26 m/s haladási sebesség függvényében (5. ábra)

      
Lépcsők átbocsátóképessége 0,26 m/s haladási sebesség függvényében (5. ábra)

 

     Lépcsők átbocsátóképesség 0,5 m/s haladási sebesség függvényében (6. ábra)

Lépcsők átbocsátóképesség 0,5 m/s haladási sebesség függvényében (6. ábra)

Lépcsők átbocsátóképesség 0,5 m/s haladási sebesség függvényében (6. ábra)

Lépcsők átbocsátóképesség 0,5 m/s haladási sebesség függvényében (6. ábra) 
      
Lépcsők átbocsátóképessége 0,5 m/s haladási sebesség függvényében (6. ábra)

Lépcsők átbocsátóképesség 0,5 m/s haladási sebesség függvényében (7. ábra)

Lépcsők átbocsátóképesség 0,5 m/s haladási sebesség függvényében (7. ábra)

      
      Lépcsők átbocsátóképesség 0,5 m/s haladási sebesség függvényében (7. ábra)

Lépcsők átbocsátóképessége 0,5 m/s haladási sebesség függvényében (7. ábra)

Lépcsők átbocsátóképessége 0,5 m/s haladási sebesség függvényében (7. ábra)

Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (8. ábra)

Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (8. ábra)

Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (8. ábra)

      

Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (8. ábra)

      
Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (8. ábra)

 

A 0,26 m/s haladási sebességnél 149-212 s, a 0,5 m/s haladási sebességnél 81-116 s, a 0,66 m/s haladási sebességnél 63-88 s között értékek, valamint a 1,2 m/s haladási sebességnél 61 s alatt történt a 25 fő áthaladása.

Lefelé haladó lépcső átbocsátóképesség vizsgálata

A modelltér mérete megegyezik a modelltér I. paramétereivel, kiegészülve egy 0,6 m széles egykarú 10 fokú lefelé haladó lépcsővel (9. ábra).

Lépcsők átbocsátóképessége 1,2 m/s haladási sebesség függvényében (9. ábra) 

Lépcsők átbocsátóképessége 1,2 m/s haladási sebesség függvényében (9. ábra)

Lépcsők átbocsátóképessége 0,26 m/s haladási sebesség függvényében (10. ábra)
          Lépcsők átbocsátóképessége 0,26 m/s haladási sebesség függvényében (10. ábra)

Lépcsők átbocsátóképessége 0,26 m/s haladási sebesség függvényében (10. ábra)

Lépcsők átbocsátóképessége 0,26 m/s haladási sebesség függvényében (10. ábra)

 
Lépcsők átbocsátóképessége 0,26 m/s haladási sebesség függvényében (10. ábra)

  Lépcsők átbocsátóképessége 0,5 m/s haladási sebesség függvényében (11. ábra)

Lépcsők átbocsátóképessége 0,5 m/s haladási sebesség függvényében (11. ábra)

Lépcsők átbocsátóképessége 0,5 m/s haladási sebesség függvényében (11. ábra)

Lépcsők átbocsátóképessége 0,5 m/s haladási sebesség függvényében (11. ábra)

     
Lépcsők átbocsátóképessége 0,5 m/s haladási sebesség függvényében (11. ábra)

   Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (12. ábra)

Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (12. ábra)

Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (12. ábra)

Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (12. ábra)

     
Lépcsők átbocsátóképessége 0,66 m/s haladási sebesség függvényében (12. ábra)

Lépcsők átbocsátóképessége 1,2 m/s haladási sebesség függvényében (13. ábra)

Lépcsők átbocsátóképessége 1,2 m/s haladási sebesség függvényében (13. ábra)     
  
Lépcsők átbocsátóképessége 1,2 m/s haladási sebesség függvényében (13. ábra)

Lépcsők átbocsátóképessége 1,2 m/s haladási sebesség függvényében (13. ábra)

  
Lépcsők átbocsátóképessége 1,2 m/s haladási sebesség függvényében (13. ábra)

 

 

A 0,26 m/s haladási sebességnél 149-204 s, a 0,5 m/s haladási sebességnél 81-109 s, a 0,66 m/s haladási sebességnél 63-83 s közötti értékek, valamint a 1,2 m/s haladási sebességnél 61 s alatt történt a 25 fő áthaladása.

Értékelés
A 36 modellezett szcenárió során másodpercben kapott értékeket a 1. táblázatban foglaltuk össze. Megállapítható, hogy ajtó áthaladás sorban és az 1,2 m/s haladási sebesség oszlopban megegyező értéket kapunk. A lépcső méretek már befolyással bírnak az áthaladási tényezőre. A 0,26 m/s haladási sebességnél a lefelé haladás a 15/30-as lépcső kivételével eltérés figyelhető meg. Más haladási sebességeknél csak a 20/23-as lépcsőnél van a le, illetve felfelé haladás esetén különbség.

 

 

áthaladás (m/s)

0,26

0,5

0,66

1,2

ajtó

61

61

61

61

lépcsőn fel 15/30

149

81

63

61

lépcsőn fel 16/30

159

83

65

61

lépcsőn fel 17/28

189

89

76

61

lépcsőn fel 20/23

212

116

88

61

lépcsőn le 15/30

149

81

63

61

lépcsőn le 16/30

156

83

65

61

lépcsőn le 17/28

166

89

68

61

lépcsőn le 20/23

204

109

83

61

 

Kapott áthaladási értékek másodpercben (1. táblázat)

Az értékek k-tényezőre történő átszámítását a 14. ábrában, valamint a 2. táblázatban foglaltuk össze.

 

 

A k-tényező sávdiagramba rendezve (14. ábra)
A k-tényező sávdiagramba rendezve (14. ábra)

 

 

áthaladás (m/s)

0,26

0,5

0,66

1,2

ajtó

40,98

40,98

40,98

40,98

lépcsőn fel 15/30

16,78

30,86

39,68

40,98

lépcsőn fel 16/30

15,72

30,12

38,46

40,98

lépcsőn fel 17/28

13,23

28,09

32,89

40,98

lépcsőn fel 20/23

11,79

21,55

28,41

40,98

lépcsőn le 15/30

16,78

30,86

39,68

40,98

lépcsőn le 16/30

16,03

30,12

38,46

40,98

lépcsőn le 17/28

15,06

28,09

36,76

40,98

lépcsőn le 20/23

12,25

22,94

30,12

40,98

A k-tényező meghatározása (2. táblázat)

A kapott k-tényezőkkel az alkalmazott lépcsőméretek figyelembevételével az OTSZ-ben rögzített kiürítés számítási képletek alkalmazása során pontosabb számítási érték feltételezhető.

Veres György, PhD aspiráns, Nemzeti Közszolgálati Egyetem), dr. Kovács Tibor egyetemi docens, PhD / CSc, Óbudai Egyetem

Az ábrákat és a táblázatokat a szerzők készítették

 

English
Examination Of Throughput By A Computer Aided Modeling

Application of simulations of computer aided modeling for throughput can be used for examination of small but significant details. The throughput factor is one the most remarkable components during practical calculations. In our article we are modeling 36 scenarios.
Kilincsbe épített beléptetőrendszer

Kilincsbe épített beléptetőrendszer

A beléptetőrendszerek piacának éllovasa, a Paxton Access, forradalmian új terméket mutatott be, amely kilincsbe épített hálózati beléptetőrendszer. Használatával a vevő nemcsak hálózati beléptetőrendszerhez jut, hanem sokféle más előnyhöz is, amely különféle piaci igényre nyújt megoldást.

 

A termék elegáns helyettesítője a kilincsnek, és a 72 mm-es Eurolock szabvány zárra egyszerűen fölszerelhető. Használatával a vevő nemcsak hálózati beléptetőrendszerhez jut, hanem sokféle más előnyhöz is, amely különféle piaci igényre nyújt megoldást.
Csakúgy, mint a többi Paxton termék, a PaxLock is egyszerűen és gyorsan telepíthető. Először is be kell helyezni az ajtóba a kiválasztott, bevésett zárat, majd a lyukak kifúrását követően már fel is lehet szerelni a Net2 Pa a xLock vezérlőt. Az elemek elhelyezése után a gyártó kínálatában megtalálható Net2Air site surveyor kit segítségével ellenőrizhető a jelerősséget, így megfelelő helyet találhatunk a Net2Air bridge, vezeték nélküli hálózati eszköznek.

 

A berendezés ideális olyan helyszíneken, ahol a kábelezés nehézségekbe ütközik. Az egység megbízható, vezeték nélküli Net2Air technológiával lép kapcsolatba a szerver PC-vel, így a Net2Air USB bridge és a Net2Air Ethernet bridge segítségével élvezhetők a vezeték nélküli hálózati beléptetőrendszer előnyei. Áramellátását két darab, könnyen cserélhető és hosszú élettartamú AA akkumulátor biztosítja. A szoftverben magunk állíthatjuk be, hogy riasszon a rendszer, ha merül az akkumulátor.

 

Kilincsbe épített beléptetőrendszer

Az online rendszer valós időben küldi jelentéseit a központi PC-nek, ezáltal a be- és kilépési események, frissítések, jogosultsági változtatásokat könnyen lehet ellenőrizni a szoftverben. A rendszer 10 ezer felhasználót és 64 időzónát tud tárolni, valamint csaknem 3600 eseményt kezelni. A rendszer 0 °C és + 55°C között üzemképes, használata beltéri ajtókra ajánlott.

Forrás: Aspectis Kft.
 

English

Paxton Unveil the Most Significant Addition to Net2 in over a Decade

Market leading access control manufacturers, Paxton, have unveiled a revolutionary new product to kick off 2012. The most significant addition to Net2 in over a decade, Net2 PaxLock is a networked access control system in a door handle. Net2 PaxLock offers installers the most complete access control solution on the market by combining Paxton’s own reliable wireless protocol with the trusted technology of Net2, the UK’s favourite access control system.

Net2 PaxLock has been designed as a simple, stylish replacement for a door handle and comes ready to fit a standard Euro lock case. The product offers customers networked access control with extra features and benefits, and a solution that is versatile enough for a range of markets. As with other Paxton products, the unit is incredibly fast to fit and simple to set up. Retailing at just Ł325, Net2 PaxLock is the easiest, most economical way for a site to extend their Net2 system, while reaping the benefits of fuss-free wireless access control.
Net2 PaxLock is ideal for sites where cabling has proven tricky. The unit communicates with the Net2 server PC via Net2Air, Paxton’s secure, proprietry wireless technology. Paxton have even developed the Net2Air site surveyor kit to ensure faultless Net2 PaxLock installation for installers fitting the unit.

Net2 PaxLock is a genuine online system that reports back to the Net2 server PC in real time, meaning door events and updates can be monitored quickly and easily in the Net2 software. Feature rich Net2 software is simple to learn, requiring no specialist technical knowledge to manage. Net2 PaxLock features a full battery management system and long battery life, making the product extremely low maintenance. You can even set a low battery alarm in Net2 software to ensure complete control when managing your security. Net2 PaxLock uses AA batteries, which can be changed in under a minute. Net2 PaxLock works with all other Paxton Net2 control units, providing ultimate flexibility. There are four versions available; Paxton and Mifare proximity compatible versions come with or without the option of key override.
By fitting Net2 PaxLock, installers can offer customers all the benefits of the market leading service that comes from one of the most established brands in the business. Net2 PaxLock is supported by Paxton’s industry leading technical support, five year product guarantee and ultimate returns policy.

Adam Stroud, Joint Managing Director, says: Net2 PaxLock is a great add-on for sites that already use Net2, or for sites where cabling has not been possible in the past. It is a product that brings together the powerful technology of Net2 with the advantages of a single door handle solution. The most significant addition to Net2 in over a decade, Net2 PaxLock provides a complete security solution.

A Biztonságtudományi Doktori Iskola PhD képzést indít

A Biztonságtudományi Doktori Iskola PhD képzést indít

Az Óbudai Egyetem Biztonságtudományi Doktori Iskolájában három éves biztonságtudományi doktori (PhD) képzés indul 2012 szeptemberétől. Jelentkezési határidő: 2012. május 30. 16.00 óra.

Az Óbudai Egyetem rektora pályázatot hirdet a 2012 szeptemberétől kezdődő tanulmányi időszakra a Biztonságtudományi Doktori Iskola PhD doktori képzésére.
Az egyetemen folyó doktori képzés a többciklusú, lineáris képzési rendszer legmagasabb szintje, amely elsősorban a biztonságtudomány területén kutató szakembereknek biztosít lehetőséget a tudományos fokozat megszerzésére, tágabb értelemben pedig hozzájárul a tudományos elit és az oktatói utánpótlásához.

A felvételire a jelentkezési határidő: 2012. május 30. 16.00 óra

A képzés a Biztonságtudományi Doktori Iskolában

  • költségtérítéses nappali,
  • levelező és
  • egyéni formákban indul.

A hat féléves képzés sikeres befejezéséről az egyetem abszolutóriumot állít ki. Ez feljogosítja a jelöltet arra, hogy doktori fokozatszerzési eljárást kezdeményezzen, doktori szigorlatot tegyen és megvédje disszertációját.

Felvételre jelentkezni a phd.uni-obuda.hu honlapról letölthető jelentkezési lap és
mellékleteinek a benyújtásával lehet az Óbudai Egyetem általános rektorhelyettesénél:

Dr. Fodor János, egyetemi tanár
1034 Budapest, Bécsi út 96/B.
Telefon: +36-1-666-5617,
Fax: +36-1-666-5621
E-mail: fodor@uni-obuda.hu

A jelentkezési lapot elektronikus formában is be kell küldeni a phd@uni-obuda.hu címre.

Fontos, hogy a jelentkezők e-mail címüket a jelentkezési lapon megadják.
A felvételi beszélgetés 2012 júniusában lesz, amelynek pontos időpontjáról a jelöltek írásban értesítést kapnak.
A Doktori Iskolába való felvételről az Egyetemi Doktori Tanács dönt, 2012. július 31-ig. A döntésről a jelentkezőket az Óbudai Egyetem általános rektorhelyettese írásban értesíti.

A jelentkezés feltételei:

  • Oklevéllel igazolt egyetemi vagy MSc végzettség.
  • Jelentkezést elfogadunk olyan végzős egyetemi hallgatóktól is, akik oklevelüket még ebben a tanévben megszerzik.
  • Legalább jó (4) minősítésű egyetemi oklevél. Ez a feltétel csak az oklevél megszerzésétől számított 2 évig érvényes, utána a minősítés csak a felvételi pontszámot befolyásolja.
  • Angol nyelvű, legalább középfokú C-típusú államilag elismert nyelvvizsga.
  • A tervezett kutatás szakmai területének átfogó ismerete, kezdeti kutatási módszertani ismeretek.

 

A képzés formái

Szervezett teljes idejű nappali doktori képzés
A doktori (PhD) fokozat eléréséhez szükséges tudásszint (ismeretanyag) és tudományos kutatói gyakorlat megszerzését segíti elő. A Doktori Iskola a doktoranduszok teljesítményét kreditrendszerben értékeli. A leckekönyvben szereplő minden sikeres vizsga és egyéb kutatói teljesítmény meghatározott kreditpontot jelent. A doktori képzésben résztvevő hallgatók oktathatnak, ez egyben kreditszerzési lehetőség is. A hallgatók képzésüket abszolutóriummal zárják le, amelyhez minimálisan 180 kreditpontot kell összegyűjteniük. A szervezett képzésben résztvevő doktorandusz az egyetemmel hallgatói jogviszonyban áll.
Magyar állami ösztöndíjat a magyar állampolgárokon kívül más EU tagállamok állampolgárai is kaphatnak. Az ösztöndíjas hallgatók az ösztöndíjuk mellett egyéb teljes állású munkaviszonyt nem létesíthetnek, rész- és mellékfoglalkozású, illetve megbízásos jogviszonyt azonban igen. Aki nem ösztöndíjas helyre kerül felvételre, az költségtérítéses nappali doktori képzésben vehet részt,

A képzés díja: 170 ezer forint/félév.

Szervezett teljes idejű levelező doktori képzés
A doktori (PhD) fokozat eléréséhez szükséges tudásszint (ismeretanyag) és tudományos kutatói gyakorlat megszerzését segíti elő. A Doktori Iskola a doktoranduszok teljesítményét kreditrendszerben értékeli. A leckekönyvben szereplő minden sikeres vizsga és egyéb kutatói teljesítmény meghatározott kreditpontot jelent. A doktori képzésben résztvevő hallgatók oktathatnak, ez egyben kreditszerzési lehetőség is. A hallgatók képzésüket abszolutóriummal zárják le, amelyhez minimálisan 180 kreditpontot kell összegyűjteniük. A szervezett képzésben résztvevő doktorandusz az egyetemmel hallgatói jogviszonyban áll.

A költségtérítés díja 85 ezer forint/félév.

Egyéni képzés
Az egyéni képzés nagy elméleti felkészültséggel, a választott témában előrehaladott kutatási eredménnyel és jelentős szakmai gyakorlattal rendelkező szakemberek számára a tanulmányi kötelezettségek teljesítése nélkül teszi lehetővé a doktori fokozat megszerzését. A doktori értekezés elkészítése és a doktori szigorlatra való felkészülés egyéni program alapján, egy az Iskola Doktori Tanácsa által jóváhagyott témavezető irányításával történik. Az egyéni képzési rend szerint felkészülést folytatók egyéni tantervű levelező hallgatóknak minősülnek.

Az egyéni képzésben résztvevők költségtérítési díja 85 ezer forint/félév.
A doktori képzésről és a doktori iskolát érintő kérdésekről a phd.uni-obuda.hu honlap ad tájékoztatást. A jelentkezéssel kapcsolatban felmerülő további kérdésekkel a doktori iskola vezetőjéhez lehet fordulni:

 

Biztonságtudományi Doktori Iskola
Dr. Rajnai Zoltán egyetemi tanár
1081 Budapest, Népszínház utca 8. I. emelet 142.
Telefon: +36-1-666-5391
E-mail: rajnai.zoltan@bgk.uni-obuda.hu

 

További részletek

Ray Mauritsson, az Axis elnök vezérigazgatója

Az IMS Research jelentése a 2011-es videopiacról

Az IMS Research 2012-es éves jelentése The World Market for CCTV & Video Surveillance Equipment (CCTV- és videorendszerek világpiaca) címmel jelent meg, és a 2011-es adatok alapján készült. A jelentés átfogó képet mutat az analóg és digitális videomegfigyelő eszközök – kamerák, rögzítők és videokódolók – gyártóiról. A jelentés alapján a hálózati videopiacon a megfigyelő kamerák kategóriájában az Axis Communications átvette az első helyet.

„A jelentés igazolja számításainkat, amely szerint tavaly nagyobb piaci részesedésre tettünk szert, ugyanis 2011-ben 33 százalékos növekedést értünk el – mondta el Ray Mauritsson, az Axis elnök-vezérigazgatója. Pozíciónk erősödésének oka, stratégiánk következetes folytatása: innovatív hálózati videotermékek gyártása, jól kialakított partneri kapcsolat és globális terjeszkedés.”

Ray Mauritsson, az Axis elnök vezérigazgatója

 

Az Axis továbbra is az első és elismerten a vezető piaci szereplője a hálózati videó kategóriájának. Még a megfigyelő kamerák kategóriájában is –, ami a hálózati kamerákon felül az analógot is magába foglalja – globálisan megszerezte a vezető helyet, tavaly a harmadik volt.
„Elképzeléseinkkel egybeesik az IMS Research előrejelzése, amely erős és hosszú távú növekedést jósol a hálózati videó termékek piacán. Ez átlagban 25 százalékos növekedést jelent évente” – folytatta Ray Mauritsson. Az IMS Research jóslata szerint a 2011-es 40 százalék után, a világon 2016-ra a hálózati kamerák értékesítése a teljes megfigyelő kamerák értékesítésének 60 százalékát teszi majd ki.

English

Axis strengthens its leading market position

Axis Communications strengthens its market leader position in network video and takes the number one position in the category of surveillance cameras. This is confirmed in the latest IMS Research report.

“The report confirms our own estimates of gained market shares last year, where we presented a growth of 33 percent,” says Ray Mauritsson, President & CEO, Axis Communications. “We further strengthened our position by continuing our strategy, which is based on the three cornerstones; launch of innovative network video products, a well-developed partner network and global expansion.”
Axis continues to be ranked number one and is the recognized market leader in the category of network cameras. Even in the surveillance cameras category, including analog as well as network cameras, Axis has taken a global number one position, compared to number three in the previous IMS report.
“In line with our own predictions, IMS Research forecasts strong, long term growth for network video products with an average yearly growth of 25 percent in the coming years,” says Ray Mauritsson.
According to IMS Research, by 2016 network camera sales are forecast to account for approx. 60% of total worldwide surveillance camera sales, compared to approx. 40 percent in 2011.

Disztribútori megállapodás:Planet-Aspectis

Disztribútori megállapodás

Disztribútori megállapodást kötött a tajvani Planet Technology és az Aspectis Kft. A Planet 1993 óta az egyik vezető szereplője a hálózati és kommunikációs eszközök piacának: több mint 120 országban van jelen és 2003 óta jegyzik a tajvani tőzsdén. A Planet erősíteni kívánja jelenlétét hazánkban, erre a feladatra az Aspectis Kft.-t ítélte a legalkalmasabbnak. A hazai cég 2003 óta több gyártót vezetett már be sikeresen a magyar piacra, és piacvezető a professzionális hálózati videó területén.

A Planet innovatív megoldásokkal rendelkezik az IP-kommunikáció területén, termékpalettáján LAN és PoE switchek, ipari switchek, médiakonverterek és IP-kamerák szerepelnek. A tajvani gyártó nagy hangsúlyt fektet a fejlesztésekre, a minőségre és a megbízhatóságra. Évek sorá több díjat nyert el termékeiért és társadalmi szerepvállalásáért.

Disztribútori megállapodás:Planet-Aspectis„A Planettel elsősorban a telepítő partnereinket szeretnénk támogatni, hogy IP-videó és beléptető munkáikat költséghatékony és megbízható infrastruktúra köré tudják építeni, ezzel elnyerni az ügyfelek elégedettségét és bizalmát. Az Aspectis eddig is csak olyan gyártók forgalmazását vállalta, amelyek élen járnak minőségben, szolgáltatásban, fejlesztésben és piaci megjelenésben. Büszkék vagyunk, hogy a Planet rajtunk keresztül szeretné erősíteni magyarországi pozícióját, mert úgy gondoljuk, hogy a cég üzleti értékei összhangban állnak az Aspectis által képviseltekkel” – nyilatkozta Bata Miklós, az Aspectis Kft. ügyvezető igazgatója.
„A Planet Technology-nál mindig az innovációt és a minőséget helyeztük előtérbe, és mindezt megfizethető áron. Magyarország számunkra fontos piac, és az Aspectis már bizonyította, hogy elkötelezett az innovatív megoldások iránt, és ezeket az értékeket sikeresen képviseli a partnerek, ügyfelek számára. Olyan képzett és aktív integrátori hálózattal rendelkezik országszerte, amellyel úgy érezzük, hogy magyar ügyfeleinknek kimagasló megoldásokat tudunk nyújtani” – mondta Lidia Sung, regionális kereskedelmi igazgató.

ASA algoritmus működése tűzjelző rendszerekben

ASA algoritmus működése tűzjelző rendszerekben

Az Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Karán rendezett biztonságtechnikai szimpóziumon elhangzott előadás alapján készült az ASA-algoritmust bemutató írásunk.

Általában a tűzjelző rendszerek kiépítésekor a generálkivitelezőnek két szempontja van – kezdte előadását a szimpóziumon Maczák Balázs, a Siemens villamosmérnöke – fogadja el a tűzoltó, és a rendszer minél olcsóbb legyen. Mára a tűzjelzésben a meghatározó a jelfeldolgozás. Az Advanced Signal Analysis – ASA-technológia segítségével a rendszer megbízhatóan érzékeli a tüzet, és kizárja a zavarjelenségek okozta téves riasztásokat. A Siemens továbbfejlesztette az algoritmusokra épülő korábbi jelkiértékelési technológiáját. Ennek használatával bármely tűztípus esetén – még a legkeményebb környezeti feltételek mellett is – nagypontosságú érzékelési megbízhatósággal rendelkezik. A feldolgozó áramkör az érzékelőre jutó jeleket matematikai komponensekre bontja, azokat a beállított algoritmus szerint módosítja, majd összehasonlítja az eszköz memóriájában tárolt adatokkal.

A megfelelő ASA-paraméter használatával minden egyes érzékelőben a várható tűzjellemzőkhöz és környezeti zavarokhoz igazítható az alkalmazott algoritmus. A paraméterbeállítások széles köre mellett az ASA-technológia erejét az adja, hogy valós idejű jelfeldolgozása az algoritmusok dinamikus változtatásával a lehető legpontosabban képezi le az érzékelő környezetében zajló folyamatokat. Gyárilag kilenc paraméterkészlet áll rendelkezésre: a maximális érzékenységet jelentő PS9-től a színházak és táncos szórakozó helyek füstgépei által sem megzavarható PS8-ig. Ez utóbbi alkalmazás esetén nagy segítséget nyújt az érzékelőnek a harmadik érzékelési elvből, azaz a szén-monoxid-érzékelőtől származó pluszinformáció. A paraméterkészlet a központi egységen keresztül vagy az érzékelő tesztelő eszköz segítségével – a megfelelő jogosultság estén – szabadon változtatható. Bármely gyári paraméterkészlet alkalmazása során az érzékelő megfelel a VdS-irányelveknek.

English

The Function Of The Asa Algorithm At Fire Alarm Systems
The ASA (Advanced Signal Analysis) technology guarantees unique detection reliability excluding false alarms caused by disturbances. This pioneer signal analysis technology from Siemens is a development of earlier algorithm-based solutions. By its use, exceptional detection reliability can be reached with all fire types, even in the toughest environmental conditions. The processing circuit breaks down the signals arriving at the sensor into mathematical components, modifies them according to the pre-set algorithm and finally compares them to the data stored in the memory of the device. By the use of the right ASA parameter, the applied algorithm can be adjusted to the expected fire characteristics and environmental disturbances in each sensor. Besides the wide range of parameter settings, the overwhelming power of the ASA technology lies in the fact that by the dynamic changes of algorithms, its real-time signal processing can detect all events in the surroundings of the sensor in the most accurate way. The device comes with nine original parameter settings: from the maximum sensitivity “PS9” to “PS8”, which cannot be disturbed even by the smoke generators of theatres or dance clubs. In the case of the latter application, the extra information coming from the third detection principle (the carbon-monoxide sensor) is of great help. Having the right licenses, the parameter settings are freely adjustable through the central unit or by the help of the sensor tester. The device complies with VdS guidelines if used with the original parameter settings of the manufacturer.

Digitális korszak – hosztolt videomegfigyelés

Digitális korszak – hosztolt videomegfigyelés

A virtualizált szolgáltatásoknál, így a hosztolt videomegfigyelés esetében is a felhasználó befolyásolhatja a felhőalapú szolgáltatások erő- és költséghatékonyságát azáltal, hogy szükségtelenné teszi a helyszíni tárolást és karbantartást. Ennek segítségével az üzlettulajdonosok csökkenthetik mind a biztonságtechnikába fektetett tőkéjüket, mind a teljes bekerülési költséget.

 

A különböző népszerű CSI és NCIS krimisorozatok nagyon sok videomegfigyelési trükköt alkalmaznak, de összehasonlította már a hollywoodi megfigyelési anyagokat azzal, amit a híradókban látni? A való világban, bankok vagy üzletek betöréseiről tudósító állóképek vagy videók általában elmosódottak, szürkék, egyszóval szörnyű minőségűek, és gyakran nehezen használhatók azonosításra vagy bizonyításra.

A hosztolt megfigyelő rendszert bárhonnan megnézheti, akár okostelefonról is

Abban világban, ahol a HDTV, Blu-ray és 3D IMAX dominálja a szórakoztatóipart, hogy lehetséges az, hogy egy megfigyelő kamerából ilyen gyenge minőségű képek érkeznek? Mindez azért van, mert meglepő módon a biztonságtechnikai telepítések 80 százaléka manapság is koaxos analógtechnológián alapul. A biztonságtechnika az egyik utolsó olyan iparág, amely még nem igazán lépett be a digitális korszakba. Ez különösen igaz kisebb üzletek, bankok, benzinkutak esetében, és ezek uralják a telepítéseket.
Az ok egyszerű. Az IP-alapú megfigyelőrendszerek – függetlenül attól, hogy sokkal jobb képminőséget, rugalmasságot és funkciókat biztosítanak – gyakran nem költséghatékony megoldásai az analógtechnológiának, főként olyan esetekben, ahol csak pár kamera védi a területet. A virtualizálásnak és a hozzáadott szolgáltatásoknak köszönhetően azok, akik az IP-videomegfigyelés előnyeit akarják élvezni, megtehetik azt hosztolt videóval foglalkozó társaságoknál.

 

Digitális korszak – hosztolt videomegfigyelés

A hosztolás vázlatos képe

A következő öt pontban felsoroljuk, hogy a felhőalapú szolgáltatások hogyan befolyásolják a biztonságtechnika piacát:

  1. A hosztolt videó most már elég biztonságos

    A biztonságtechnikai ipar történelmileg lassan követi a változásokat. Amikor arról van szó, hogy életeket vagy ingóságokat védünk, akkor érthető, hogy olyat akarunk használni, amilyet ismerünk. Ugyanakkor az IT- és a fogyasztói ipar már bebizonyította, hogy bízhatunk a felhőben. Manapság rábízzuk pénzügyeinket, személyes adatainkat, e-mailjeinket a felhőre, vagyis már megtanultunk bízni az Internetalapú szolgáltatásokban. Mivel az IP-alapú biztonsági eszközök lényegében csak egy újabb pontjai a hálózatnak, ezért ugyanolyan többszintű jelszavakkal, SSL-titkosítással, VPN-ekkel és tűzfallal kell ezeket is védeni.

    A hálózati kamerán kívül a hosztolt technológia maga is javítja a videók védelmi szintjét. Jelenleg is különleges biztonsági intézkedések vannak érvényben, például, amikor a kamerát egy adott hosztolt videoszolgáltatóhoz csatlakoztatjuk, akkor az egészen addig csak és kizárólag azzal a szerverrel fog kommunikálni, amíg újra nem bootoljuk és nem regisztráljuk át egy másik szolgáltatóhoz.
    Ezen felül ugyanazok a teljesítési szabályok vonatkoznak a megfigyelő videókat hosztoló szolgáltatókra, mint a nagy adattárolók gyártóira, többek között SAS 70, RSA titkosítás és ISO 27001. Még egy érv, hogy a felhőben tárolt videoadat sokkal biztonságosabb az analóg megoldásokban használt DVR-eknél: a hosztolt videóban fizikailag nem vesz részt tároló eszköz a helyszínen, amit el lehetne lopni. Bár olcsó tároló eszközt (NAS-t) hozzá lehet csatolni a rendszerhez, hogy kivédjük a hálózati hibákat, de ez nem feltétlenül szükséges.

  2. Hosztolt videót egyszerű és megfizethető használni

    Bármilyen elektromos biztonságtechnikai eszköz telepítésekor az egyszerűség, a folyamatos működés és karbantartás a legfontosabb szempontok. IP-eszköz (kamera) telepítése sokkal egyszerűbb, mint analóg társáé. Nincs koaxkábel, nincs csatlakoztatni való BNC konnektor és kezelhetetlen mennyiségű tápkábel. IP kamera esetében az eszközt egyszerűen csatlakoztatjuk egy switch-csel a hálózathoz – és ha a switch PoE-s, akkor szükségtelenné teszi további külső áramforrás használatát. A telepítési hatékonyságot tovább növeli, hogy ma már olyan plug-and-play szolgáltatások működnek, amelyek lehetővé teszik, hogy az IP-kamera egyetlen gombnyomással „haza telefonáljon” a hosztolást végző szervernek, ezáltal szükségtelenné teszi a telepítő munkáját, aki átnavigál bennünket a tűzfal, IPcímek, portok stb. hosszadalmas folyamatán.
    A folyamatos üzemelés és rendszertámogatás is egyszerűbb. A felhasználó egyszerű webböngészővel csatlakozhat a kameráihoz és rendszereihez, így élő képanyagot, előzményeket és eseményeket tud megnézni, valamint kezelheti ezeket az eseteket mobil készüléke segítségével (iPhone-nal vagy iPaddel, Blackberry-vel vagy androidos okostelefonnal).
    A rendszerkarbantartás és -frissítés a színfalak mögött zajlik a hosztolást végző szolgáltatón keresztül. A felhasználónak mindössze annyi a dolga, hogy ismerje, miként navigálhat a saját webportálján, és emlékezzen a felhasználónevére és jelszavára.

  3. A hosztolt videó sokkal több előnyt nyújt a „röghöz kötött” rendszereknél

    A felhőben működő hosztolt videó egyszerűbb, megfizethetőbb és rugalmasabb rögzítési megoldást kínál a videomegfigyelési rendszereknek. Életképesebb alternatíva függetlenül attól, hogy egy üzlettel rendelkező kisvállalkozásról beszélünk, amelyet távolról figyelünk meg, vagy franchise üzletláncról több telephellyel, ezáltal több párhuzamos megfigyelési helyszínnel, vagy nagyvállalatról, ahol biztosítani kell egy távoli helyszínen a videoanyagok archiválását.
    A virtualizált szolgáltatásoknál, így a hosztolt videomegfigyelés esetében is a felhasználó befolyásolhatja a felhőalapú  szolgáltatások erő- és költséghatékonyságát azzal, hogy szükségtelenné teszi a helyszíni tárolást és karbantartást. Ennek segítségével az üzlettulajdonosok csökkenthetik a biztonságtechnikába fektetett tőkéjüket és a teljes bekerülési költséget. Bár a videoadat a felhőben „tartózkodik”, a felhasználók mégis egy biztonságos portálon keresztül bárhonnan hozzáférhetnek élő és archivált képekhez is, ahol van Internetkapcsolat.
    A felhő megvéd olyan lehetséges lopástól vagy kártól, amely a felvétel helyszínén megtörténhet. Továbbá a rendszer támogatása helyi NAS-sal nemcsak megmenti a felhasználót a kritikus videoanyagot, amikor a rendszer leáll, hanem lehetővé teszi a nagy felbontású, nagy képarányú videó rögzítését.

  4. Nagy- és kisvállalkozások esetében egyaránt működik a hosztolt videó

    Ideálisan a kevesebb kamera számú rendszerek kedvezőbbek a hosztolt videomegfigyelés használatára, amikor a sávszélesség az egyik legfőbb szempont, mégis számos más alkalmazás használja az egészes kicsitől az nagy méretű cégekig.

    Digitális korszak – hosztolt videomegfigyelés

    Kisebb, egy telephellyel rendelkező vállalkozások videoanyagainak hosztolási sémája

    A nagyobb, kereskedelmi egységek, amelyek a gyors, költséghatékony módját keresik a diszkrét, ideiglenes megfigyelésnek szintén érdeklődnek eziránt a technológia iránt. A hosztolt videó kitűnő megoldás számukra, hiszen a csatlakoztatott kamera könnyedén áthelyezhető egyik helyről a másikra, az automatikusan visszatalál a hoszthoz és visszacsatlakoztatja magát.
    Ezen felül az olyan – jelenleg nagy területen működő – megfigyelő rendszerek tulajdonosai felismerték az igényt arra, hogy a kritikus videoadatokat az adott helyszíntől független, biztonságos felhőalapú helyszínre irányítsák, mivel nem engedhetik meg maguknak, hogy elveszítsenek adatokat.

    Digitális korszak – hosztolt videomegfigyelés

    Több telephellyel rendelkező cégek videoadatainak hosztolási rajza

    Pénztárak, szerverszobák és gyógyszertárak csak néhány példa, arra, ahol kritikus videotartalommal számolhatunk, és elvesztése gondot jelent az üzlet számára. A vállalkozások izolálhatják ezeket a kamerákat és egyszerűen hosztolhatják az adott helyszíntől távolra, így a videó biztonságban van, és megszűnik a videó manipulálása, a DVR,hiba vagy a lopás kockázata.

  5. Analógrendszerek esetében is működik a hosztolt videó

    A kis cégek körében az analóg rendszerek még mindig népszerűek. Sok eszközt éppen mostanság telepítettek, tehát életciklusuk elején járnak még. Ezért még ha a végfelhasználó érdekelt is abban, hogy áttérjen egy IP-alapú megfigyelésre a jobb képminőség, funkcionalitás, teljes bekerülési költség és rugalmasság miatt, a nemrég történt befektetés miatt mégis vonakodik lépni.
    A megoldás az analógról IP-re történő áttérésre a jó stratégiában rejlik. Az analóg jeleket egyszerűen és költséghatékonyan át lehet alakítani digitálissá videokódolók segítségével. Ezeket az eszközöket a meglévő analóg eszközhöz kell kötni – amely átalakítja az analóg streameket IP-vé – és utána egy switch-hez kell csatlakoztatni, ami kommunikálni tud a hálózaton keresztül. Amikor a meglévő analóg kamera elromlik, egyszerűen kicserélhető egy teljesen IP-s egységgel, így lesz teljes a változás.

    Digitális korszak – hosztolt videomegfigyelés

    Út az analógkorszakból a digitálisba

    Ebben az esetben nincs szükség a meglévő hardver, kábel vagy infrastruktúra kihagyására ahhoz, hogy elindítsuk az analógról az IP felé történő váltást. Ez az első lépcsőfoka a teljes hálózat alapú videomegfigyelés fejlődésének, és újabb bizonyítéka annak, ahogy a felhő megváltoztatja az iparág arcát.

Arcfelismerés rejtett, hálózati kamerával

Arcfelismerés rejtett, hálózati kamerával

A csőbe rejtett, fejmagasságban elhelyezhető kamerák készítette éles képek megbízható arcfelismerésre alkalmasak. Méretükből adódóan akár az arcát takarni próbáló személy is könnyen azonosítható velük.

A sorozat tagjai az Axis P8513 és az Axis P8514 hálózati kamerákat az épületek kijáratánál, olyan magasságban kell elhelyezni, hogy közvetlenül az emberek arcát vegye fel. Ezzel megbízható arcazonosítást lehet végezni, még abban az esetben is, ha az adott személy kapucnit vagy baseballsapkát visel. A rejtett kamerákat szinte lehetetlen felismerni, így védettek a rongálástól, és kiváló képeket készítenek köszönhetően a szemmagasságú telepítésnek.

Arcfelismerés rejtett, hálózati kamerával
Megbízható az arcfelismerés, abban az esetben is, ha valaki baseball sapkával takarja el az arcát

Az Axis P85 sorozat két készüléke

  • a HDTV 720p felbontású Axis P8514 és
  • az SVGA Axis P8513.

Mivel teljesen észrevehetetlenek a kamerák, bárhol elhelyezhetők. Több egyidejű H.264 és Motion JPEG videojelfolyam továbbítására képesek teljes, 30 fps képsebesség mellett. A kamerák széles látószöggel rendelkeznek, a P8514 57°-os, amíg a P8513 48°-os vízszintes látósávját a +/– 90°-os forgatás, a digitális PTZ funkciók és az előre beállítható járőrútvonal teszi teljessé.
Főként kiskereskedelmi üzlethelységek, bankok beltéri megfigyelésére ajánljuk a 0–50 Celsius-fok között működőképes kamerát.

A készülékek csőbe szerelve érkeznek, ami úgy néz ki, mint a „magasugró léc”. A kamerát 160 cm magasságra optimalizálták, fix fokális tűlyuk optikával rendelkeznek, és széles látószögű képeket továbbítanak. Fehér, fekete és króm színben kerülnek a piacra, így kiválasztható, melyik szín illik legjobban a felhasználási környezetbe. Magassági mércével ellátott matrica is kapható a fekete, illetve a króm színű kamerákhoz, amíg a fehér modellt előre felszerelt magassági mércével együtt árulják. Ez az eszköz hasznos segítsége lehet a rendőrségnek és a szemtanúknak abban, hogy meghatározzák az elkövető magasságát.
A kamerák széria készülékei formájuknak és a beépített három méteres Ethernet kábelnek köszönhetően könnyen telepíthetők. Mivel csőről van szó, a kamera irányát úgy tudjuk beállítani, hogy elforgatjuk a csövet és olyan irányt állítunk be, ahonnan a lehető legjobb képeket tudjuk készíteni az elhaladó vevők arcáról.
Arcfelismerés rejtett, hálózati kamerával

 

A kamera jellemző tulajdonságai

  • szemmagasságban elhelyezhető kamera, éles közeli képek arcfelismeréshez és áttekintő képekhez
  • háromféle színvariáción kapható, hogy könnyebben beleilleszthető legyen a környezetébe
  • egyszerűen telepíthető, többféle, a falra szerelést megkönnyítő kellékkel kapható
  • tökéletes minőségű videót továbbít akár HDTV 720p felbontásban is
  • többszörös, egyidejű H.264 jelfolyamot szolgáltat
  • nincs szükség karbantartásra
  • magassági mércével kapható
  • intelligens videofunkciókkal rendelkezik
  • 3 év garancia
  • pixelszámláló
Arcfelismerés rejtett, hálózati kamerával

 

Forrás: Aspectis

Biztonságtechnikai szabványok az Európai Unióban

Biztonságtechnikai szabványok az Európai Unióban

Az Európai Unió egyik alapelve, hogy az áruk és szolgáltatások szabad áramlásának megteremtése érdekében az Unió területén azonos szabványok érvényesüljenek. Ennek megfelelően Magyarországon is, a megjelenést követően általában hat hónapon belül nemzeti szabványként bevezetik az európai szabványügyi szervezetek (CEN, CENELEC, ETSI) által egyetértésben megalkotott szabványokat. Írásunk a hazai biztonságtechnikai szabványok helyzetét tekinti át, és tárgyalja, hogy mit is jelent: a szabványok alkalmazása önkéntes.

Mottó “A bíróságon a legjobb védőügyvéd a szabvány.”

A szabvány fogalma a nemzeti szabványosításról szóló 1995. évi XXVIII. törvény szerint:

  • 1. számú melléklet (1) pont: A szabványosítás olyan tevékenység, amely általános és ismételten alkalmazható megoldásokat ad fennálló vagy várható problémákra azzal a céllal, hogy a rendező hatás az adott feltételek között a legkedvezőbb legyen.
  • 4. § (1) A szabvány elismert szervezet által alkotott vagy jóváhagyott, közmegegyezéssel elfogadott olyan műszaki (technikai) dokumentum, amely tevékenységre vagy azok eredményére vonatkozik, és olyan általános és ismételten alkalmazható szabályokat, útmutatókat vagy jellemzőket tartalmaz, amelyek alkalmazásával a rendező hatás az adott feltételek között a legkedvezőbb.

Másfelől viszont a szabványosítás a minőséget biztosító gazdaságirányítás eszköze. A felhasználó és a fogyasztó érdekében végzett szabályozó, egységesítő tevékenység. A szabványnak a tudomány, a műszaki gyakorlat és a tapasztalat letisztult eredményein kell alapulnia, és a közösség érdekeit optimálisan kell szolgálnia.

Forrás: europa.eu

Magyar Szabványügyi Testület
Az 1995. évi XXVIII. törvény értelmében a Magyar Köztársaság nemzeti szabványügyi szervezete a Magyar Szabványügyi Testület (MSZT), státusza köztestület, amelynek célja a hazai termékek és szolgáltatások hosszú távú piaci versenyképességének elősegítése és fenntartása hazai, európai és nemzetközi szinten.
Fő területei:

  • a szabványosítás,
  • a tájékoztatás,
  • a tanúsítás és
  • az oktatás.

 

Fontos, hogy az Európai Unióban egységesen, minden tagországban az egyes szakterületekre vonatkozó szabványok képezzék a műszaki-technikai igények alapját. Az európai szabványok alkalmazása önkéntes, ez azonban nem azt jelenti, hogy mindenki azt tehet, amit csak akar. A régi porosz-orosz rendszer szerint: „minden tilos, ami nincs megengedve”. Ma azonban az angolszász felfogás érvényesül Európában, azaz: „minden megengedett, ami nem tilos, de mindenért egyéni felelősséget kell vállalni”.

Így tehát a már idézett 1995. XXVIII. törvény szerint:
6. §
(1) A nemzeti szabvány alkalmazása önkéntes.
(2) Műszaki tartalmú jogszabály hivatkozhat olyan nemzeti szabványra, amelynek alkalmazását úgy kell tekinteni, hogy az adott jogszabály vonatkozó követelményei is teljesülnek.

A szabványok jogszabállyal történő kötelezővé tétele tilos, mert ez ellenkezik a szabványosítás egyik legfontosabb alapelvével, az önkéntességgel, amely alapelv értelemszerűen megjelenik a nemzeti szabványosításról szóló 1995. évi XXVIII. törvényben és az MSZT működési szabályaiban is. A kötelezővé tett szabványok a kereskedelem műszaki akadályát képezik. A külkereskedelemben zavarokat okoz, ha a szabvány az egyik országban kötelező, a másik országban pedig nem, így a piac szereplői számára a gazdasági szabályozók nem lennének egységesek, mivel a hazai és a külső piacokra történő gyártás során a vizsgálati és az értékesítési feltételek különbözőek lennének.

Ma érvényes előírások, amelyekre tekintettel kell lenni mindennapi munka során
Villamos termék (gyártmány) esetén a termékfelelősségi törvény, az 1993. évi X. törvény 9. §-a szerint: „A károsulttal szemben a gyártó felelősségének korlátozása vagy kizárása semmis.”

Mit is jelent ez a gyakorlatban?
A BTK (1978. évi IV. törvény) 171. §-a szerint: „Aki foglalkozása szabályainak megszegésével más vagy mások életét, testi épségét vagy egészségét gondatlanságból közvetlen veszélynek teszi ki vagy testi sértést okoz, vétséget követ el …”
Ez a gyakorlatban azt jelenti, hogy a bíróságok álláspontja szerint szakmai szabály mindig van: ha van írásban lefektetett kötelező szabály, akkor az; ha nincs ilyen, akkor a nem kötelező előírás:

  • a szóban elhangzott utasítás,
  • a kialakult szakmai gyakorlat vagy
  • végső esetben az igazságügyi szakértő erre vonatkozó (utólagos) vélelme.

 

Tehát, akkor kötelező vagy sem a szabvány alkalmazása?
Ha nincs más előírás, akkor a gyakorlatban kötelezőnek tekinthető, és mivel az „önkéntes”, nem kötelező szabvány is szakmai szabály, amelynek előírásai mértékadókká válnak a veszélyeztetés elbírálása során. Sőt egyes szerződések keretében az önkéntes szabvány is kötelezővé tehető.
A harmonizált szabványok biztonsági előírásainak alkalmazásától csak abban az esetben szabad eltérni, ha valaki ezektől egyértelműen eltérő megoldást alkot, és kijelenti, hogy vállalja a felelősséget azért, hogy az(ok) legalább a szabvány(ok)ban szereplő előírással azonos biztonsági szintet nyújt(anak).

Biztonságtechnikai szabványok
A biztonságtechnikát érintő szabványok jelentős része az MSZ EN 5013x-x sorozatban „riasztórendszerek” alatt találhatók meg. Ezek felölelik a behatolás- és támadásjelző-rendszerek, a zárt láncú televízió, azaz a videotechnikai megfigyelőrendszerek, a beléptetőrendszerek, a segélyhívó- és riasztásátviteli-rendszerek követelményeit. Kiegészítő szabványsorozat az MSZ EN 50518-x, amely a felügyeleti és riasztásfogadó központokkal szembeni igényeket tartalmazza. Az Euralarm az 1970-ben alapított európai tűzvédelmi és biztonságtechnikai gyártók és telepítők szövetsége jelenleg 14 országból körülbelül 700 tagot számlál. A szövetség tagjai az európai piacon évente több mint 3,5 milliárd euró forgalmat bonyolítanak. Ez körülbelül 70 százaléka a teljes európai biztonságtechnikai piacnak.

Nemzetközi szabványügyi szervezetek

  • ISO International Organization for Standardization (Nemzetközi Szabványügyi Szervezet)
  • IEC International Electrotechnical Commission (Nemzetközi Elektrotechnikai Bizottság)
  • ITU International Telecommunication Union (Nemzetközi Távközlési Egyesület)

 

Európai szabványügyi szervezetek

  • CEN Comité Europèen de Normalisation (Európai Szabványügyi Bizottság)
  • CENELEC Comité Europèen de Normalisation Electrotechnique (Európai Elektrotechnikai Szabványügyi Bizottság)
  • ETSI European Telecommunications Standards Institute (Európai Távközlési Szabványügyi Intézet)

 

Az európai szabványok kibocsátói jelük szerint

  • EN (European Standard) Nemzeti szinten kötelező a bevezetése: fordítással, jóváhagyó közleménnyel. Az ütköző nemzeti szabványokat kötelező visszavonni.
  • ENV (European Prestandard, előszabvány) Átmeneti alkalmazásra van, olyan műszaki területeken, ahol a fejlődés nagyon gyors, és sürgős szükség van valamilyen irányelvre. Nemzeti szinten – valamilyen módon – kívánatos a bevezetése. Nem szükséges az ütköző nemzeti szabványok visszavonása.
  • HD (Harmonised Document, harmonizált dokumentum) Nemzeti szinten bevezetése kötelező. Ütköző nemzeti szabványok visszavonása kötelező.
  • TS (Technical Specification, műszaki előírás) Nem kötelező a nemzeti szinten történő bevezetése. Ha mégis bevezetik, akkor olyan jogállású, mint az EN, tehát ütköző szabványok visszavonása kötelező.

 

English

Security Engineering Standards In European Union
One of the fundaments of the European Union, in compliance with creating the free movement of goods and services, is applying the same standards within the European Union. In accordance with this, six months after their publication, European standards are normally introduced in Hungary as well as national standards on the basis of the consensus by the European Standards Organizations (CEN, CENELEC, ETSI). It would also be important that these standards should constitute the basis of all technical and technological requirements in every EU member states. However, adopting the standards of the EU is voluntary. Most of the standards of security engineering can be found in the serial of MSZ EN 5013x-x under the title of ‘alarm systems’. This contains the requirements of intrusion and hold-up systems, CCTV, namely the video surveillance systems, access control systems, social alarm and alarm transmission systems. MSZ EN 50518-x is the additional serial of security standards which contains the requirements of monitoring and alarm receiving centers.

Az Óbudai Egyetem Tavaszi Biztonságtechnikai Szimpóziuma

Az Óbudai Egyetem Tavaszi Biztonságtechnikai Szimpóziuma

Az Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kara biztonságtechnikai szimpóziumot rendez 2012. április 12-én a 14-től 17 óráig. A rendezvény helyszíne: 1081 Budapest, Népszínház utca 8., P10 előadóterem.

A rendezvény moderátora: Kovács Tibor (CSc/PhD, Óbudai Egyetem).

A 14 órakor kezdődő előadások:
Móré Attila (TVT Zrt., okleveles biztonságtechnikai mérnök, biztonságtechnikai szakértő, szakmai és projekt ellenőr):
Biztonságtechnikai szabványok az Európai Unióban
(Security engineering standards in European Union)

Szabó Lajos (nyugállományú rendőr alezredes, okleveles biztonságtechnikai mérnök, biztonságszervező szakmérnök):
Objektumok külső gyűrűje védelmének megszervezése
(The organization of defense of the objects on the perimeter)

Maczák Balázs (Siemens Zrt., villamosmérnök, értékesítési mérnök):
ASA-algoritmus működése tűzjelző rendszerekben
(The function of operation ASA algorithm at fire alarm systems)

Otti Csaba (Óbudai Egyetem Alkalmazott Biometria Intézet, mérnök-közgazdász, magánbiztonsági szakértő):
ABI – Biztonságtechnikai eszközök vizsgálata és minősítési módszertana
(ABI – The evaluation of security devices and testing methodology)

Veres György (PhD aspiráns, Nemzeti Közszolgálati Egyetem, Fővárosi Tűzoltóparancsnokság) – Kovács Tibor (CSc/PhD, Óbudai Egyetem, egyetemi docens):
Számítógépes modellek az átbocsátóképesség vizsgálatára
(Computer aided modeling for the examination of throughput)

Szűcs Gábor (Robert Bosch Kft., biztonságtechnikai mérnök, CCTV termékmenedzser):
Hőkamerás alkalmazási lehetőségek és a távoli infravörös érzékelős képalkotás többlete a hagyományos, optikai alapú CCTV-eszközökkel szemben
(Main application possibilities of thermal cameras and the added value of FAR infrared sensor-based imaging compared to traditional, optical-based CCTV devices)

Horváth Tamás (Magyar Villamos Művek, szakértő, okleveles biztonságtechnikai mérnök) – Kovács Tibor (CSc/PhD, Óbudai Egyetem, egyetemi docens):
A hőkamerák alkalmazási területei, kiemelten a biztonságtechnikai felhasználásokban
(Possible applications of thermal cameras with special regard to security engineering)

Hauser Tamás (Opus Kft., biztonságtechnikai mérnök) – Gál János (Nemzeti Média és Hírközlési Hatóság, vagyonvédelmi szakreferens):
Hatósági eljáráshoz illeszthető biztonsági rend kialakítása, speciális felderítő eszközök alkalmazásával az objektumvédelem területén
(Creating a security order for official procedures using special detection equipment in object protection)

Gerlai Zoltán (Gunnebo Magyarország Kft, építőmérnök, külkereskedő közgazdász, kiemelt ügyfélkapcsolati menedzser):
A harmonika gyorskapu előnyei és alkalmazási területei
(Benefits and application areas of the Quick Folding Gate)

Seres Zoltán (Siemens Zrt., biztonságtechnikai mérnök, értékesítési mérnök):
FibroLaser vonali hőérzékelő rendszer
(FibroLaser linear heat detection system)

A biometria alapjai

A biometria alapjai

A biometria egyre inkább elismert és elfogadott azonosítási mód, így új rendszerek tervezésekor vagy régiek frissítése során ajánlott megfontolni az alkalmazását.

A biometria fogalma az élőlények fizikai és kémiai paramétereihez kapcsolódik. Olyan azonosítási mód, amely méri és rögzíti valamely személy egyedi fizikai, testi jellemzőit és ezeket az adatokat azonosításra és hitelesítésre használja fel.

Forrás: zejoaorafael.blogspot.com

A biometrikus azonosításhoz először is rögzítik a felhasználók valamely tulajdonságát, majd a személyazonosítás során az egész adatállományból kiválasztja a rendszer az adott személyt. A biometrikus azonosítás előnye, hogy az emberek valódi, tőlük elválaszthatatlan tulajdonságán alapul. Mivel a hagyományos azonosítási eljárásokban a különféle tárgyak, mint például a chipkártyák, a proximity- vagy mágneskártyák, kulcsok elveszthetők, ellophatók, másolhatók, de egyszerűen csak otthon felejthetők. A jelszavakkal pedig az a gond, hogy elfelejtjük, elmondjuk valakinek, vagy épp kilesik. Ezektől a hátrányoktól a biometrikus eljárás mentes: az ujjunkat mindenhova magunkkal visszük, és a hangunkat sem tudjuk kölcsönadni. A gyakorlati tapasztalatok szerint nem okoz nehézséget az embereknek azonosításkor egy szenzor megérintése vagy a nevük kimondása. A technika fejlődésének és a sorozatgyártásnak köszönhetően egyre olcsóbbak lesznek a szükséges eszközök, egyre elérhetőbbé válnak a felhasználók számára. Ma már nem csak a nagyvállalatok és állami intézmények számára elérhető a technológia, hanem kisebb vállalkozások és lakossági felhasználók is alkalmazhatják.

A biometria alapjai
Kézgeometria-elemzés

A biometrikus azonosítás típusai

  • Hanganalízisen alapuló felismerés: használata rendkívül egyszerű, de számolni kell a háttérzaj, illetve hangvesztés okozta gondokkal.
  • Kézgeometria-elemzés: alkalmazása egyszerű, de gond lehet az ízületi gyulladás, illetve a jelentős fogyás.
  • Retinavizsgálat:a retina szkennelése különleges pontosságú azonosítási eljárás, de agresszív módszer, használata körülményes, mivel a fejet rögzíteni kell ahhoz, hogy a fénysugarat a retina hátfalára vetíthessük.
  • Íriszdiagnosztika:az írisz szkennelése nagyon sokat fejlődött az elmúlt néhány évben, és most is intenzíven fejlesztik a készpénzfelvevő automatáknál történő alkalmazását. Az eljárás mintegy négyszáz adatpontot használ az azonosításhoz, bár nem mindenkinek van pontosan mérhető írisze, így például a kontaktlencse, a szürke hályog okozhat problémát, továbbá az emberek tiltakozhatnak a szemükbe vetített erős fénysugár miatt.
  • Arcfelismerés látható fényben:jelenleg különleges esetekben használják. Nem alkalmas tökéletesen egyforma egypetéjű ikrek megkülönböztetésére.

 

A biometria alapjai
Arcgeometria (Forrás: ebanking.cl)

  • Arcthermogram:az archőtérkép olyan felvétel, amelyet infrakamerával készítenek, és az arc hőmintáját mutatja. Előnye a teljes diszkréció. Ennek a technológiának a fejlesztése manapság a költségek csökkentésére irányul, hogy minél szélesebb körben váljék alkalmazhatóvá.
  • Ujjnyomat-azonosítás: az ujjnyomaton alapuló rendszerek különböző felszínt letapogató technológiát alkalmaznak, például optikai, kapacitás és hő. A hővonal szenzorral működő megoldás lényege, hogy a letapogatott ujjnyomatból annak aprólékos részleteinek különleges tulajdonságait lokalizálja, és tárolja vagy összehasonlítja az elektronikus kulcskód mintával, amely egyedileg azonosítja a szkennelt ujjal.
Ujjnyomat-azonosítás

Ujjnyomat-azonosítás

Az ujjnyomat-azonosítás a biometria legelterjedtebb azonosítási módja, beléptetőrendszerek tervezésekor érdemes megfontolni a használatát.

Az ujjnyomaton alapuló rendszerek különböző felszínt letapogató technológiát alkalmaznak, például optikai, kapacitás és hő. A hővonal szenzorral működő megoldás lényege, hogy a letapogatott ujjnyomatból annak aprólékos részleteinek különleges tulajdonságait lokalizálja, és tárolja vagy összehasonlítja az elektronikus kulcskód mintával, amely egyedileg azonosítja a szkennelt ujjal. A rendszer nem tárol képet csak titkosított bináris kódmintát, amelyet nem lehet felcserélni vagy arra felhasználni, hogy rekonstruáljunk az eredeti ujjnyomat képét, így nem kell tartani a személyiségi jogok megsértésétől sem. Az ujjnyomat egyedi és állandó, a rendelkezésre álló technológia a személyek pontos azonosítására alkalmasak ujjnyomatuk képe alapján. Csak mintegy negyven-hatvan jellemző pontot rögzít, így gyors a teljes adatbázisban való keresés és az azonosság megállapítása.

Magánszemélyek esetében az eszköz vezérelheti a családi ház bejárati ajtaját, agarázskaput, a riasztót, a belső terek közötti átjárhatóságot, illetve bármely olyan egységet, amelynek vezérlése elektronikus úton történik. Sőt mindezek nyitását-zárását külön ujjhoz lehet rendelni. Az eszköz üzembe helyezése szükségtelenné teszi a kapukulcsok használatát, megszűnik a kulcsok elvesztése okozta gond, amely különösen gyermekek esetében jelent kockázatot.

Ujjnyomat-azonosítás

A vállalkozói körben lehet egyszerűen egy ajtó nyitását biztosító eszköz, beléptetőrendszer, munkaidő-nyilvántartó rendszer eleme, illetve belső helyiségek elkülönítését szabályozó egység. A nagyobb biztonság érdekében az élő ujj detektálása a fejlődés alapköve. Az eszközök nagytöbbsége már különbséget tud tenni az élő ujj és az ujjnyomat másolata között. Ezt az ujj valamilyen elektrodinamikus, optikai, termikus vagy biológiai jellemzőjének a vizsgálatával vagy ezek kombinációjával érik el. Jellemző adat a hőmérséklet, a szívlüktetés érzékelése, továbbá a bőrszín spektrumának analizálása.
Az ujjnyomat-olvasó biztonságtechnikai eszköz is, ezért szabotázsvédelemmel is ellátott. Olcsóbb típusoknál ezt általános mikrokapcsoló oldja meg: a falra rögzítéskor egy rugó ellenében a mikrokapcsoló felhúzott állásba kerül. Ha az olvasót eltávolítják a falról, akkor a mikrokapcsoló alaphelyzetbe kerül, és a riasztórendszernek jelet ad. Komolyabb eszközöknél általában rezgés-, fényérzékelők is megtalálhatók, továbbá a falon kívüli szerelés helyett a süllyesztett kivitel kerül előtérbe. Az ujjnyomat-azonosító rendkívül biztonságos, és a legelterjedtebb az egész világon.

XIII. MBVE konferencia

2012. március 21. és 23. között tartották az Magyarországi Biztonsági Vezetők Egyesülete, az MBVE XIII. konferenciáját Egerszalókon. A konferenciát Fialka György, az MBVE elnöke, a Budapest Bank biztonsági igazgatója nyitotta meg. Előadásában a minőség, a tudás és az oktatás jelentőségét hangsúlyozta ki.

A konferencia előadásai

  • Petőfi Attila rendőr vezérőrnagy, az ORFK Bűnügyi főigazgatója a 2011. évet értékelte bűnügyi szempontból a magánbiztonságot érintő kérdésekben.
  • Tóth Tamás rendőr dandártábornok, Budapest rendőrfőkapitánya Budapest, mint a köz- és magánbiztonság együttműködésének bázisfelülete címmel tartott előadást.
  • Kondorosi Ferenc egyetemi tanár az önvédekezés jogi fogalmának megváltozása, anomáliák és előnyök témakörében ismertette a közelmúlt jogszabályváltozásait.
  • Német Ferenc, az Személy-, Vagyonvédelmi és Magánnyomozói Szakmai Kamara elnöke az új magánbiztonsági törvény és a köztestületek szerepe témakörében elemezte a törvénymódosítás hatását a kamarákra.
  • Sabjanits István, a Belügyminisztérium Rendészeti Vezetőképző és Kutatóintézet Tudományszervezési Osztálya osztályvezetője a bűnmegelőzési kutatások gyakorlati alkalmazásait mutatta be.
  • Szentessy Zoltán, a British American Tobacco (BAT) európai operációs biztonsági igazgatója a BCP (Business Continuity Plan – üzletmenet folytonossági terv) és a kockázatmenedzsment (risk management) szerepe témakörében fejtette ki véleményét.
  • Czirkus László, a Nemzeti Adó- és Vámhivatal (NAV) biztonsági vezetője a NAV biztonsági szervezetének felépítését és működését mutatta be előadásában.
  • Bökönyi István, az IN-KAL Security Events Kft. stratégiai igazgatója Tömegrendezvények biztosítása és a tiltakozási kultúra alakulása hazánkban címmel tartott előadást.
  • Károlyi László, a Magyar Posta Zrt. biztonsági és vészhelyzeti főigazgató A Magyar Posta, mint kritikus infrastruktúra címmel szólt a cég biztonsági problémáiról.
  • Eiselt György, a Belügyminisztérium szabályozási és koordinációs helyettes államtitkára a Magánbiztonsági kerekasztal jogi, közszolgálati lehetőségeiről fejtette ki véleményét.
  • Kakas Nándor, a Miniszterelnökség biztonsági vezetője a közigazgatás biztonsági normái témakörében adott elő.
  • Zólyomi Zsolt, a MOL Nyrt. biztonsági és védelmi igazgatója az üzemanyag-előállítás biztonsági kérdéseit elemezte.
  • Görömbei László, a Flextronics International Kft. biztonsági igazgatója Cost of loss – költség és veszteség – címmel tartott prezentációt.
  • Thuróczy Géza, a Novosec Security Kft. ügyvezetője a HD-CCTV/HD-SDI Full HD-felbontás és adatátvitel koaxkábelen témaköréről szólt.
  • Bata Miklós, az Aspectis Kft. ügyvezetője az Axis Lightfinder technológiáját mutatta be, illetve a komplex IP-biztonságtechnikai megoldások címmel tartott előadást.
  • Pálffy Zoltán, Seawing Kft. képviseletében előadásában NFC (Near field communication) és biztonságtechnika összefüggéseit ismertette.
  • Besenyei Péter, az STP Kft. ügyvezető igazgatója a cég saját fejlesztésű 100 megapixeles Logipix kamera videoanalízis szoftverét mutatta be.
  • Csendes István, az ASM Security Kft. tűzvédelmi szakértője a menekülési útvonaljelzők és biztonsági világítási rendszerek jövőjéről szólt előadásában.
  • Szarka Szilveszter, a T.E.L.L. Software Hungária Kft. értékesítési vezetője T.E.L.L. – a XXI. századi kommunikáció címmel mutatta be termékeiket.
Használható videofelvételek

Használható videofelvételek

Hat kérdést kell tisztázni a videorendszer telepítése előtt az optimális képminőség érdekében. A cél, hogy az igénynek megfelelő videoképet megfelelő áron kapja a felhasználó.

A gazdasági válság ellenére a videokamerás megfigyelőrendszer már több mint egy évtizede a biztonságtechnikai ipar legdinamikusabban növekvő ága. Ebben az elképesztő mértékű növekedésben legalább annyira közrejátszik a költséghatékonyság, mint a 2001. szeptember 11-e utáni világunk biztonságérzet utáni vágya. Óriási a fejlődés az analóg videokamerák óta, a mai digitális megfigyelőrendszerek ugyanis már rugalmas, könnyen bővíthető IP-hálózaton keresztül működnek. A fejlődés olyan megfigyelő rendszerhez vezet, amely a változó kihívásoknak megfelelően költséghatékony és rugalmasan alakítható.
A legdinamikusabban fejlődő jellemző képminőség. Csak úgy, mint a szórakoztatóelektronikai piacra szánt kamerák esetében, a megfigyelőkamera-gyártók is versenyeznek a minél nagyobb felbontású termékek előállításában. Ennek egyszerű az oka, nagyobb felbontás esetén jobb, azaz élesebb a kép, ettől pedig elégedettebbek lesznek a vevők.

Középpontban a felhasználó
Nem mindegy, hogy mi a célja a kamera felhasználásának. Vajon áttekintő megfigyelést szeretne vagy részletes képeket? A felvételt élőben fogják nézni vagy felveszik, és több hónapon, vagy akár éven keresztül tárolják? Az IP-hálózatoknak el kell bírniuk a nagy felbontású videók adatforgalmát, és a szükséges háttértár mennyisége gyorsan elérheti a terrabájtokat, tehát ezeket kérdéseket komolyan meg kell fontolni. A kép minősége természetesen fontos, de az, hogy mennyire hasznos a felhasználó számára a megfigyelőrendszer, attól függ, hogy mire használja a képeket. Hat, egyszerű lépés segítségével össze lehet állítani a vevő számára az optimális megfigyelőrendszert.

Mindenek előtt el kell döntenünk, mire fogjuk használni a rendszert. Adott terület áttekintő képére van szükség vagy nagy felbontású képekre apróbb részletekről, például arc- vagy rendszámtábla-felismerés. Nincs olyan kamera, amely az összes felhasználási területen optimális lenne. A legmegfelelőbb megoldás érdekében gyakran kombinálják a különböző kameratípusokat, amelyeket más-más feladatokra optimalizálnak.

A beállítás a hangolást vagy finomhangolást jelenti.

Csak akkor lehet igazán értékelni a megfigyelőrendszert, ha a monitor vagy tévé rendesen kalibrált. A következő négy pont segíti a kalibrálást:

  1. A cél meghatározása
  2. Helyszíni felmérés

    Miután meghatározzuk a célokat, végig kell gondolni az igényeket, amelyeket a különböző kameráknak teljesíteniük kell:

    • Terület: hány „fontos” területet kell megfigyelni a helyszínen. Ezek közel vannak egymáshoz vagy távolabb? Ez dönti el a szükséges kamerák számát és típusát.
    • Fényviszonyok: a legtöbb kamerának van nappali és éjszakai üzemmódja. Problémák lehetnek a megvilágítással? Lehet lámpák használni?
    • Kül- vagy beltéri lesznek a kamerák: a kültéri kamerák számára fontos szempont a természetes fény. Lehetséges, hogy extra lámpákat kell telepíteni, nem is beszélve a kameraházról, amely védi a kamerákat a portól, nedvességtől vagy rongálástól.
    • Nyílt vagy titkos megfigyelés: a látható helyre felszerelt kamerák elijeszthetik a potenciális bűnözőket, de rongálásra is csábíthatnak. A kamerák rejtett vagy nyílt elhelyezése hatással van a kameratípus kiválasztására, a kameraházra és az állványzatra.

    Használható videofelvételek

    • A kamera kiválasztása

      A kamerák kiválasztása a legfontosabb lépés a megfigyelőrendszer működésének szempontjából. A képfelbontás kritikus terület bármelyik kameránál, és e körül volt a legnagyobb felhajtás az utóbbi években. Ebből a szempontból három típust lehet megkülönböztetni: megapixel, HDTV és standard felbontás.

      A megapixel kamerák nem követnek semmilyen szabványt. A megapixelek száma azt mutatja meg, hogy a kamerában hány darab fényérzékelő elem található. A megapixel kamerák hihetetlenül éles képet tudnak alkotni, de alacsonyabb képfrissítési rátával. Ilyen kamerákat szoktak használni a banki megfigyelőrendszerekben, közlekedési csomópontokban és egyéb kültéri installációkban.
      A HDTV-kamerák képe szép, magas képfrissítési rátával, gazdag színekkel és szélesvásznú (16:9) formátummal. A HDTV ideális olyan helyzetekben, ahol a képfrissítésnek folyamatosnak kell lennie, mint a kaszinókban, repülőtereken vagy térfigyelő kamerák esetén.
      A standard felbontás általában a VGA-ra utal (640 × 480 pixel) vagy ennek sokszorosára. Ez a legöregebb kategória a megfigyelő kamerák piacán. Ennek ellenére ezek ma is használhatók: erőteljes optikai zoommal felszerelve a VGA-kamera sok hasznos szerepet tud betölteni.
      Kategóriától függetlenül a következő kritikus tényezőkre kell figyelni a kamerát kiválasztása során:

      • Képfrissítési ráta – 25–30 képkocka per másodperc között van a PAL- és NTSC-szabvány. De ha nem történik semmilyen esemény, 1–4 fps elég felvétel céljára.
      • Optika és lencsék – a lencse határozza meg a látószöget, fényerőt, a kamera fókusztávolságát, képminőségét és a megfigyelés optimális távolságát.
      • Fényérzékenység – fel kell mérni a helyszín fényviszonyait, és tesztelni, hogy a kamera miként teljesít azon viszonyok között.
      • Íriszkontroll – fontos része a képminőségnek. Ez lehet fix vagy állítható, ez utóbbiak lehetnek manuálisak vagy automatikusak.
      • Videotömörítés – csökkenti a videó méretét, hatékonyabb átvitelt és tárolást tesz lehetővé. Győződjön meg róla, hogy standard tömörítő eljárást használnak-e, hogy ne legyen gond a kompatibilitással.
    • Kameraállványzat

      Csak a megfelelő állványzat tudja biztosítani az optimális képminőséget. Szempontok a kamera elhelyezésére:

      • A megfigyelés tárgya – győződjön meg róla, hogy a kamera megfelelő-e a feladatra, jó helyre van-e felszerelve, és képes-e ellátni feladatát.
      • Ha szükséges, növelje a fényerőt – az ideális fényerő érdekében lámpákat felszerelni egyszerű és olcsó megoldás.
      • Kerüljük a közvetlen napfényt – mert elvakíthatja a kamerát, és csökkentheti az érzékelők teljesítményét. Ha lehetséges helyezzük el úgy a kamerát, hogy állandóan a nap és a megfigyelni kívánt terület között legyen.
      • Kerüljük a háttérvilágítást – ez akkor lehet gond, ha ablak vagy erős lámpa előtti területet szeretnénk megfigyelni. Ha nem lehet máshová helyezni a kamerát, győződjünk meg róla, hogy WDR-képes-e.
      • Állítsuk be a kamerát – az optimális képhez mindenképp be kell állítani a fehéregyensúlyt, fényerőt és élességet.
      • Jogi megfontolások – a megfigyelést korlátozhatják vagy tilthatják a törvények. Először mindig ismerjük meg a helyi előírásokat.

      Használható videofelvételek

      • A kamera beállítása
        • Távoli zoom – ezzel a zoom végső beállításait a számítógépről is elvégezeti. Ez biztosítja az optimális látószöget.
        • Távoli fókusz – nem szükséges a helyszínen kézzel beállítani a kamerákat. A változtatások a számítógépről is elvégezhetők.
        • Pixelszámláló – lehetővé teszi, hogy a kezelő négyszöget rajzoljon a képernyő adott területére, és megtudja a kijelölt terület méretét. Ezzel ellenőrizve, hogy a videó eleget tesz-e a képfelbontással szemben támasztott követelményeknek.
      • Képernyőbeállítás
        • Fényerő – a személyes igényeknek megfelelően kell beállítani.
        • Kontrasztarány – ha alacsony, akkor a sötétebb árnyalatokat nehéz megkülönböztetni egymástól. Ha túl magas, akkor a világos árnyalatok mosódnak össze.
        • Gamma – ez a kontraszt egyik mérőszáma, amely a kép közepes tónusaira van hatással. A megfigyelő igénye szerint kell beállítani.
        • Élesség – vesse össze a különböző színárnyalatok határait, és döntse el milyen élesség a legkényelmesebb a szemének.

Végeredmény
Hogy a lehető legjobb megfigyelőrendszert kapja, a videofelvételek használhatósága a legelső szempont, amelyre tekintettel kell lenni, és ez meghatározza az összes további döntést.

Forrás: Axis Communications, aspectis.hu

Alkalmazott Biometria Intézet

Biometria a gyakorlatban

Felgyorsult a biometria alkalmazása az azonosításban. Számos módszer közül lehet választani, és egy-egy típushoz sokféle gyártmány kapható. A cél, megtalálni az adott feladathoz a legjobban illeszkedő megoldást: a legbiztonságosabbat, a leggyorsabbat a legjobb ár-érték arányban. Ebben kívánja segíteni a döntéshozókat képzésével az ABI, az Alkalmazott Biometria Intézet.

2012. március 1-jén mutatkozott be a szakmának az ABI, az Alkalmazott Biometria Intézet. A rendezvényt az Óbudai Egyetem, Bánki Donát Gépész- és Biztonságtechnikai Mérnöki Karán tartották. Bevezetőjében dr. Horváth Sándor, a kar dékánja bejelentette, hogy a kar Doktori Iskolája megkapta az engedélyt, így szeptembertől indítják a biztonságtudományi doktori képzést.

Német Ferenc, a Személy-, Vagyonvédelmi és Magánnyomozói Szakmai Kamara elnöke elmondta, együttműködési magállapodást kötöttek a karral, mivel támogatni kívánják, hogy az elméleti tudást minél gyorsabban és hatékonyabban alkalmazzák a gyakorlatban.
Majd dr. Kovács Tibor docens figyelemreméltó előadást tartott a biometria történetéről és gyakorlati alkalmazásának néhány kérdéséről. Bemutatta, milyen biometria jellemzőket és azok kombinációit használhatjuk azonosításra. Valamint szólt néhány, ma már jól működő alkalmazásról. Így például elmondta, Indiában kormányhivatalból pénzt utalni és attól fogadni csak íriszazonosítás mellett lehet, ezzel a megoldással jelentősen csökkent a korrupció. A párizsi Charles De Gaulle repülőtéren pedig a már regisztrált személyek ujjnyomat azonosítás után, átvizsgálás nélkül kelhetnek át a kijelölt pontokon. Az okostelefonok beléptetésre történő alkalmazásáról a docens elmondta, nem a személyt, hanem csak a készüléket tudja azonosítani a rendszer. Majd szólt a feladatorientált alkalmazás (Mission Oriented Applications – MOA) fontosságáról, amely ebben az esetben azt jelenti, hogy meg kell találni a célhoz legjobban illeszkedő biometriai azonosítási módszert és a feladat elvégzésére leginkább alkalmas készüléket.

Alkalmazott Biometria Intézet

Otti Csaba, magánbiztonsági szakértő arról tájékoztatott, hogy jelenleg világszinten is egyedülállók, mert nincs több ilyen szinten felszerelt független laboratórium, mint az ABI-ban. Az intézet célja, a biometrikus biztonsági eszközök vizsgálati eljárásainak kidolgozása, a lehető legtöbb biometrikus technológia és eszköz összegyűjtése, tesztek végzése, a készülékek minősítése. A kapott eredményeket először a gyártóval ismertetik, majd ha az nem javítja a hibát, akkor a nyilvánossággal is. A szakértő elmondta, fontos a készülékek vizsgálata, mivel a gyártók által adott leírások nem mindig fedik teljesen a valóságot. Erre példaként bemutatott egy ujjnyomat olvasót, amely víz alatt is működik, valamint képes az élő ujj felismerésére, ami igaz is, csak a gyártó nem emelte ki, a két funkció csak külön-külön működik, egy időben nem alkalmazhatók. Majd hozzátette az is előfordul, hogy a gyártó 10 ezer felhasználó kezelésére is alkalmasnak mondja a készüléket, amely valóban alkalmas ennyi adat tárolására, de a gyakorlat azt mutatja, hogy 1200 felhasználó esetében már összeomlik a rendszer.
Az oktatás területén is számos feladata van az ABI-nak, részt vesznek az alapképzésben, valamint tematikus és továbbképzéseket tartanak. A döntéshozók számára indított képzéssel az a céljuk, hogy már a tenderkiírás fázisában segítsék a munkát. Tapasztalataik szerint nem megfelelő a döntési környezet, gyakran eredménytelenül megy el pénz és idő, mert a kellő ismeretek hiányában a megrendelő nem a számára ideális rendszert választja ki, mivel sokféle biometria módszer közül kellene megtalálnia az optimális megoldást.

A videomegfigyelés következő 15 éve

A videomegfigyelés következő 15 éve

Az első hálózati kamerát 15 évvel ezelőtt mutatták be. Martin Gren a videomegfigyelés következő 15 évet elemzi. Vajon a piac teljesen átáll az IP-re? Az Internet sokkal nagyobb szerepet kap a megfigyelésekben?

Martin Gren, az Axis egyik alapítója

Amíg korosztályunk szeretettel gondol a kazettás és videomagnókra, addig a fiatal felnőttek már csak a digitális technológiát ismeri. De talán meglepő az iEverything Generation számára, hogy az első, digitális alapú, hálózati videokamerát még csak 15 évvel ezelőtt mutatták be.
Az évfordulón előretekintünk a videomegfigyelési piac következő 15 évére. Vajon a videomegfigyelés teljesen átáll az IP-re? Mekkora szerepe lesz az Internetnek megfigyelésekben? És hasonlít majd arra a világ, ahogy a tévében és mozifilmekben látjuk? De mielőtt belenézünk a kristálygömbbe, emlékezzünk vissza, milyen jövőt jósoltak 15 évvel ezelőtt a hálózati videónak.

A múlt

Amikor az Axis Communications 1996-ban piacra dobta az első hálózati kamerát, akkor még elég gyenge teljesítményt nyújtott. Másodpercenként 1 képet frissített CIF-felbontásban és 17 másodpercig tartott, hogy egy D1-es pillanatképet készítsen. Lényegében használhatatlan volt a megfigyelésre. De szerencsére a távoli megfigyelésben sikert aratott, és meglátta benne a lehetőséget az analóg piac. Mi a digitális átállás mellett tettük le a voksunkat.

Az analógról történő elmozdulás

A videomegfigyelés jövője legegyszerűbben Moore törvényének elemzésével jósolható meg: a teljesítmény (az integrált áramkörök összetettsége) 18 havonta megduplázódik ugyanakkora költség mellett.
A nagyközönségi elektronikai piacon világos bizonyítékát láthatjuk Moore törvényének, különösen a személyi számítógépek és az okostelefonok területén. De ezzel nem ér véget a felsorolás. A ma kapható hálózati kamerák másodpercenként 30 képet frissítenek HDTV 1080p felbontásban, összehasonlításképpen 15 évvel ezelőtt a kamera 1 kép/mp képet frissített 0,1 MP-es felbontásban. Ez 600-szoros teljesítményjavulás. Mindez azt jelenti, hogy a hálózati kamerák lekörözték Moore törvényét, és sokkal több előnyt nyújtanak az analóg társaiknál.
Az IP-videó előnyei jóval világosabbá válnak, amikor a képminőségről, a rendszer bővíthetőségéről és egyszerű telepítésről kezdünk beszélni (különösen több mint 25 kamera esetében). A hostolt videoszolgálatásnak köszönhetően már kevesebb kamera mellett is gyorsabban megtérül a befektetés.
A recesszió miatt az elmúlt években nagyon felgyorsult az analógról az IP-re való áttérés, mivel a jövőben mind a gyártók, mind a vásárlók jobban fokuszálnak technikai kiadásaikra. Talán sokan rácsodálkoznak, de a Sony 2010 októberéig gyártott Walkmant, ugyanígy látni fogunk továbbra is analóg kameraeladásokat. Mivel a mai fiatal felnőttek belenőnek professzionális biztonsági szerepekbe, az analóg technológia melletti érvek egyre gyengülnek. Nem csak azért, mert a hálózati kamerákat könnyű telepíteni és jobb képminőséget szolgáltatnak, hanem mert a digitális generáció elvárja a folyamatos fejlődést, ezt pedig csak az IP tudja nyújtani.

A videomegfigyelés következő 15 éve

Nő a szabványok iránti igény

A nagyarányú technológiai adaptáció érdekében több iparágban is láthattuk a megfelelő szabványok lefektetésének fontosságát. A jó szabványok támogatása egyszerű használathoz vezet, ez az egyik oka, hogy az analóg videó ennyi ideig domináns maradt.
Mivel az IP-megfigyelés valamennyi nagy szereplője befektetett az ONVIF támogatásába (beleértve az Axist is), úgy gondolom ez lesz a hálózati videó alkalmazásprogramozási felületének (API) fő szabványa. Úgy vélem, hogy a PoE, HDTV és SMPTE szabványosítás is nagy hatással lesz a videomegfigyelésre.
Képminőség és HD-felbontás

Van még mit tennünk akkor is, ha a hálózati videó sokkal jobb képminőséget nyújt. Az elmúlt 15 évben a legnagyobb fejlődés a felbontás és a képfrissítési sebesség területén történt. A jövőben, Moore törvényének teljesítménybeli fejlődése a képalkotás területére fog hatni. Arra számítok, hogy az átlagos megfigyelő kamera többet fog látni az emberi szemnél – ez a mai típusokról még nem mondható el.
Ez jó hír a biztonságtechnikai iparágnak, mivel a kutatás-fejlesztésbe történő folyamatos befektetésből valamennyien hasznot húzunk. A technológia szempontjából a cső alakú kameráktól (van, aki még emlékszik rájuk?) a CCD-szenzorokon át, a CMOS-szenzorok felé mozdultunk. 15 év múlva nem valószínű, hogy a CMOS-technológia fog dominálni, hanem valószínűleg egy másik technológia emelkedik majd ki. Az új CMOS-technológia olyan szenzorokat fog kialakítani, amelyek hatalmas felbontással bírnak, és így el is jutunk az első Terapixeles kamerához. Ha ez megtörténik, akkor már nem a szenzorok, hanem az optika lesz a képminőség korlátja.
Az elmúlt 70 évben az NTSC és PAL analóg szabványokkal éltünk együtt. Ma, mindenki ismeri, és sokunknak már van is HDTV-je otthon. Mint biztonságtechnikai szakember arra számítok, hogy a munkában jobb képminőséggel fogunk dolgozni, mint otthon – és nem fordítva. A HDTV tökéles megoldás megfigyelésre, mert az SMPTE szabvány garantálja a képarányt, felbontást, színhűséget és képfrissítési sebességet. Amíg a megapixel mostanában divatos dolog, igazából egyszerűen csak az adott kép pixelszámát jelöli, és a mozgó kép többi tényezője változtatható. Éppen ezért a „való világban” az átlagfogyasztó a megapixelt a digitális fényképezőgépeknél nézi, a HDTV-t pedig otthoni szórakozásra veszi.
Nem gondolom, hogy a HDTV-szabvány 70 évig fog kitartani, de a következő 15 évben a legtöbb kamera HDTV-kompatibilis lesz. Ezzel párhuzamosan természetesen a multimegapixel (és Terapixel!) kamerák is fontos szerephez jutnak – főként bűncselekmények elemzésekor lesz fontos szerepük, hiszen a videó mentése nagyobb és részletesebb felbontásban történhet és a HD-folyamok szétválasztatók. Abban rejlik a hálózati videó szépsége, hogy nem korlátozza a felbontást.

Hőkamerás képalkotás

Mindenki szeretné, ha kamerája a lehető legalacsonyabb Lux-értékkel bírna, de mit szólna a nullához? Manapság a hőkamerás képalkotás külön szakterület, főként a hadsereg és a kormány használja. Ahogy a hőkamera komponenseinek költségei csökkennek, miközben nő rá az igény, sokkal több új alkalmazási területen tűnik majd fel. Ma egy hőkamerára 400 hagyományos megfigyelő kamera jut. Úgy vélem az elkövetkezendő pár évben ez az arány 1:50-hezre fog módosulni, mivel a biztonságtechnikai szakemberek felismerik, hogy ez a technológia megfizethető, könnyen csatlakoztatható a meglévő hálózati rendszerhez, és számos kritikus alkalmazásban használható.

Belső és felhőalapú tárolás

A hálózati kameratechnológia 1996 óta tartó fejlődésével párhuzamosan a tárolási piac is – beleértve a flash memóriát és a hard diskeket – bőven túlszárnyalta Moore törvényét. Hamarosan képes lesz a kamera saját, belső memóriája HDTV felbontásban több heti videoanyagot tárolni. Ezzel megváltozik a felállás, mivel a kamera olyan felvevő eszközzé válik, amely például analóg rendszerrel lehetetlen lenne. Ehhez a változáshoz a videokezelő szoftverek és a hibrid DVR-ek gyártóinak kell alkalmazkodniuk. A DVR-ek valószínűleg a csőalakú kamerák sorsára jutnak, és 15 éven belül eltűnnek.

Hostolt videó

Manapság a felhasználók meg tanultak bízni a hostolt szolgáltatásokban, mint a Hotmail, Gmail és Facebook. A szakmabeliek közül sokan biztonsággal használják a Salesforce.com és a felhőalapú HR-rendszereket. És valamennyien megbízunk az Internetes bankokban. Ha ma rábízzuk a pénzünket erre a „felhőre”, akkor ebből logikusan következik, hogy holnap ugyanezt tesszük a biztonsági videofelvételekkel is. Az előnyök kézzelfoghatók: nincs szükség DVR-re, választhat, hogy használjon-e helyi tárolásra NVR-t, nem kötelező fix kamerát kiválasztania, ezen felül pedig ott vannak az IP-videó többi alapvető előnyei. A videót bármilyen, internetes csatlakozással bíró eszközzel megtekintheti, beleértve a mobilját is. A hostolt videó olyan lehetőség, amelynek azonnali hatását látom az elkövetkezendő pár évben – különösen a kisméretű vállalkozások területén –, és felhasználói mérete hihetetlenül nagyra fog nőni 2025-re.

Kamerák, amelyek a telepítőt és a felhasználót tartják szem előtt

Mint ahogy az iPhone forradalmasította a mobiltelefonok kinézetét, a hálózati videó is ezen az úton halad a CCTV-iparban. Mialatt az átállás gyakran lassabb, mint a fogyasztói elektronikus piacon, további javulás várható a telepítés megkönnyítése érdkében: rugalmas felfüggesztési opciók, a PTZ-kamerák nagyobb arányú használata várható. A biztonsági szolgálatot folyamatosan képezni kell, és olyan mobileszközökkel szükséges ellátni, amellyel a hatékony felhasználás érdekében a kamerákhoz tudnak csatlakozni.

Elemzések

Ezt megjósolni nagyon kockázatos dolog, és az elmúlt 5–10 év tapasztalata azt bizonyítja, hogy a jóslatokat gyakran cáfolja meg az élet. Mégis azt állítom, hogy a következő 15 évben az analitika kiemelkedő szerephez jut. Nehezebb azt megmondani, mindez pontosan mikor következik be. A képfeldolgozás hatékonysága fejlődik, mind a szerveren, mind a másik végponton, a kamerában is folynak majd elemzések. A nyertesek azok lesznek, akik a legjobb analitikát nyújtó cégekkel és nyílt szabványú rendszerekkel társulnak. A végponton zajló elemzéseknek nagyobb súlya lesz, ezért arra számítok, hogy a jövőben a legtöbb elemzés itt fog zajlani, ami valószínűleg metaadattal vagy riasztásokkal látja el a videokezelő szoftvereket. Az analitikával foglalkozó cégek sikerének a kulcsa, ha az egész fejlesztési folyamat során a végfelhasználót tartják szem előtt – és nem csak összedobnak valami analitikát, azt remélve, hogy a telepítő majd maga megoldja a kérdést. Az Apple már készül valamire az AppStore modellel. A megfigyelő piac pedig hamarosan követni fogja.

Az ipar és a társadalom

Manapság a legtöbb megfigyelő kamerát a kereskedelemben találjuk. Ahogy a hálózati kamerák fejlődnek, az integrátorok és felhasználóik számos más alkalmazási területet fognak felfedezni. Városi megfigyelés, közlekedés és egészségügy olyan területek, ahol növekedni fognak a telepítések, ahogy a megfigyelőrendszerek egyre hatékonyabban működnek. A másik terület, amelyre figyelni kell, a lakossági piac. Sokan próbálnak kamerákat értékesíteni ház- és más ingatlantulajdonosoknak, úgy vélem, a hostolt videónak köszönhetően ez nagy alkalmazási terület lesz.
A videó felhasználását illetően szigorodni fog a törvényi szabályozás, de elhelyezésüket tekintve nem. Rendszerek telepítési költségei csökkenni fognak – főként a tárolási és telepítési oldalon, de a szoftverhasználat területén is. A biztonságtechnikai ipar együttes növekedésének és az új felhasználási területeknek köszönhetően úgy gondolom, sokkal több kamerát fogunk olyan új területeken is látni, ahol addig soha nem is gondoltuk volna. Ez, az iparágban mindenki számára fényes jövőt vetít előre.

aspectis.hu

Mi a különbség a hálózati kamera és a webkamera között?

Mi a különbség a hálózati kamera és a webkamera között?

A hálózati kamera és a webkamera – bár mindkettő videoképet továbbít az Interneten keresztül – számos, lényeges dologban tér el egymástól: amíg a webkamera működéséhez szükség van számítógépre és szoftverre, addig hálózati kamera része az operációs rendszer és a szoftver is.

A legtöbb ember manapság tisztában van azzal, mik is azok a webkamerák, PC-kamerák és USB-kamerák – ezek kicsi videokamerák, amelyeket közvetlenül a számítógéphez csatlakoztatunk, és képeket továbbítunk velük az Interneten keresztül. Ezek a használata nagyon elterjedt az utóbbi években, így például több ezer honlap használja őket, hogy izgalmasabbá tegye az oldalukat, és növelje látogatottságukat. Ilyenek az állatokat megfigyelő kamerák vagy a pillanatnyi időjárást, forgalmi helyzetet mutató kamerák.

A webkamera működéséhez szükség van számítógépre és szoftverre

Hálózati kamerák
Manapság, a technológia fejlődésével a felhasználók már jóval több, hasznosabb és izgalmasabb alkalmazási lehetőséget találtak akváriumok vagy kávéfőzők elmosódott képeinek a nézegetésénél, mint például az otthonuk, házuk őrzése, távoli megfigyelése.
A hálózati kamerák sokkal változatosabbak a webkameráknál, mert beépített operációs rendszerrel és webszerverrel rendelkeznek, amelyek segítségével számítógépektől függetlenül működnek. Amíg a legtöbb webkamerát az adott számítógép három méteres körzetén belül el kell helyezni, addig a hálózati kamera bárhová kerülhet, ahol vezetékes vagy vezeték nélküli Internet található. A felhasználónak egyszerűen csak csatlakoztatnia kell a kamerát az otthoni vagy irodai hálózatra és megadnia az IP-címet. Ha ezzel kész, akkor bármilyen Internetre csatlakoztatott PC-ről, hagyományos webböngésző használatával hozzájuthat a kamera képéhez. A képek jelszóval védhetők, hogy hívatlan látogatók ne férjenek az oldalhoz.

Mi a különbség a hálózati kamera és a webkamera között?

A hálózati kamera része az operációs rendszer és a szoftver is

Beépített operációs rendszer
A hálózati kamerák sokkal intelligensebbek webes társaiknál, mivel beépített operációs rendszerrel rendelkeznek olyanokkal, mint a számítógépek. Az operációs rendszer képezi a hálózati kamera „agyát”, és lehetővé teszi, hogy egyszerűen integrálhassuk az otthoni hálózatba. Például, a háztulajdonos egyszerűen tudja telepíteni a hálózati kamerát a bejárat közelében, majd beprogramozza úgy, hogy minden egyes látogatóról küldjön e-mailben egy képet, aki az ajtó előtt megáll. Vagy az üzlettulajdonos egyszerűen tudja egy időben több telephellyel rendelkező vállalkozását figyelni az Interneten keresztül. Ezen felül sok embernek van hétvégi háza, üdülője vagy hajója, amit akár hosszú ideig nem látogat. Ezáltal azok könnyebben ki vannak téve a rablásnak, vandalizmusnak és más kárnak. Hálózati kamerák segítségével a háztulajdonosok és üzleti vállalkozók bármikor ránézhetnek tulajdonukra, és távollétükben is értesülhetnek az esetleges gondokról. Ezek az alkalmazások szinte lehetetlenek vagy nagyon nehezen megvalósíthatók webkamerák segítségével, mivel a közelben szükség lenne egy számítógépre, amely folyamatosan, online működik.
Nem is annyira a távoli múltban a hálózati kamerák sokkal nagyobbak és drágábbak voltak a webkameráknál. Mostanra a technológia fejlődésének – és nem utolsó sorban a fejlődés motorját beindító és azóta is úttörő munkát végző – Axis Communications-nek köszönhetően, a hálózati kamera mérete a mobiltelefonéval, ára pedig egy jobb minőségű webkameráéval vetekszik. A fejlett többletfunkcióknak és rugalmasságuknak köszönhetően a hálózati kamerák gyorsan terjednek a fogyasztói piacon, és felkapott eszközökké váltak a kis- és középvállalkozások számára, valamint elérhetők az otthoni felhasználásra fokuszáló biztonságtechnikai piacon.

Hálózati kamerák és webkamerák közötti különbségek

Hálózati kamerák Webkamerák
rugalmas – bárhová elhelyezhető a számítógép három méteres körzetén belül kell, legyen
minden egyben van – kamera, operációs rendszer és szoftver működéséhez szükség van: számítógépre, kamerára és szoftverre
könnyen telepíthető – csak az IP-címet kell beállítani bonyolultabb, összetettebb telepítés
működtetni, beállítani és használni bármilyen webböngészővel rendelkező számítógéppel lehe adminisztrációs szoftver szükséges működtetéséhez
kiváló minőségű képeket továbbít gyakran rossz minőségű képeket továbbít

 

aspectis.hu

 

Hálózati videomegoldások tervezése és alkalmazása a különféle ágazatokban

Hálózati videomegoldások tervezése és alkalmazása a különféle ágazatokban

Az IP-alapú hálózati kamerák élő képe a világ bármely pontjáról megnézhető és rögzíthető. A nyílt szabványú eszközök önállóan működnek, és bárhol elhelyezhetők, ahol van IP-kapcsolat. Az Interneten keresztül a képeket videokezelő szoftverrel vagy böngészőn keresztül is megnézheti a felhasználó.

A kamerák képe Interneten keresztül távolról is nézhető

Az igényfelméréskor felmerülő kérdések

  1. Határozza meg a megfigyelni kívánt területet és az ehhez szükséges videotermékeket
    • Terület: Milyen jellegű területet szeretne megfigyelni? Mennyire fontos a megfigyelés?
      Ezek a szempontok segítenek annak eldöntésében, hogy a leendő hálózati kamerának, milyen jellemzőkkel szükséges rendelkeznie, például milyen legyen a képminőség, a fényérzékenység és az objektív típusa.
    • Fényviszonyok: a szükséges beltéri és/vagy kültéri fényérzékenység szintje.
      A kamerákkal foglalkozó cégek kínálatában szerepelnek kifejezetten beltéri használatra szánt hálózati kamerák, valamint beltéri és kültéri használatra egyaránt alkalmas modellek. A beltéri/kültéri kamerák általában olyan varifokális objektívvel vannak felszerelve, amelyek automatikusan tudják változtatni az íriszt. Kaphatók tovabbá nappali/éjszakai kamerák, amelyek nappal színes képet, éjjel pedig fekete-fehéret adnak. Ellenőrizze a hálózati kamera – beltéri és kültéri – fényérzekenységi adatait. A fényviszonyok (pontosabban a megvilágítás erősségének) jellemzésére a „lux” mértekegységet használjuk.
    • A kamera és a célobjektum közötti távolság.
      Ez határozza meg, hogy milyen típusú kamerára és objektívre van szükség (például normál, nagy látószögű vagy teleobjektív), továbbá ettől függ a kamera elhelyezése is. Attól függően, hogy mennyire rugalmas megoldásra van szükség, választhat fix fókusztávolságú vagy varifokális objektíveket, továbbá fix vagy cserelhető objektíves kamerákat.
    • Szükséges látótér: széles, szűk, általános vagy részletes lefedés (vagyis meg kell határozni, hogy a terület mekkora részet szükséges megfigyelni).
      Ennek alapján választhat fix szögű és fókuszú kamerákat vagy akár olyanokat is, amelyek távolból forgathatók/dönthetők/zoomolhatók (PTZ), amelyekkel nagyobb területet lehet lefedni.
    • Mekkora a forgalom?
      Minél nagyobb a forgalom, annál több kamerára van szükség.
  2. Határozza meg az alkalmazás igényeit: jellemzők, felvételi és tárolási igények
    • Alkalmazás: Egyszerű megfigyelés a távolból, intelligens távfelügyelet fejlett eseménykezeléssel, bemeneti/kimeneti funkciók, hangátvitel?
    • Megtekintési és felvételi igények: Határozza meg, milyen időpontokban és milyen gyakran lesz szükség megtekintésre és felvételre: nappal, éjszaka és/vagy hétvégén? Mérje fel az igényeket minden egyes megfigyelni kívánt területre.
    • Számítsa ki a tárolás helyigényét.
    • Számítsa ki a szükséges sávszélességet.
  3. Határozza meg a hálózati igényeket (LAN/WAN, vezeték nélküli)
    • Mérje fel a jelenlegi LAN-t: mire használják?
    • Mérje fel a jelenlegi WAN-kapcsolatok használatát.
    • Határozza meg, hogy adott időszakokban mikor fordul elő csúcsterhelés.
    • Szükség van új berendezésekre (például switch-ek) vagy elegendő a meglévő infrastruktúra és eszköz?
    • Szükséges előfizetnie további internet szolgáltatónál a redundancia érdekében?

Hálózati videomegoldások tervezése és alkalmazása a különféle ágazatokban

A kereskedelemben ha nő a biztonság, csökken a veszteség

Testreszabott megoldások különböző ágazatok és alkalmazások számára
A sokoldalúság és a bővíthetőség alapvető követelmény a hálózati videorendszerekkel szemben. Olyan hálózati videomegoldásokat kell keresni és összeállítani, amelyek a különböző üzleti ágazatokban és alkalmazási területeken tartós eredményeket képesek elérni.

Kereskedelem
A hálózati videorendszer révén növelhető a biztonság és csökkenthető a veszteség, optimalizálható az üzletvezetés, és nagymértékben növelhető az üzlet teljesítménye. A POS- és EAS-rendszerekkel egyszerűen integrálható. A hálózati videomegoldások bármikor és bárhonnan lehetővé teszik a távoli és a helyi megfigyelést. A befektetés gyors megtérülése mellett a rendszer széles körű együttműködésre képes, például a videohálózattal végzett ügyfélszámlálás, a beépített riasztási funkciók és a kasszafigyelés összevonásával.

Hálózati videomegoldások tervezése és alkalmazása a különféle ágazatokban Közlekedés
A hálózati videorendszerek révén a repülőtereken, a nyilvános közlekedési csomópontokon vagy akár a járműveken is javítható a biztonság és a szervezettség. A távoli megfigyelési szolgáltatások révén bármi megfigyelhető: a bejelentkezési pultok, a peronok, a kapuk, a hangárak, a parkolók, a poggyászkezelő-rendszerek és akár a használatban lévő járművek is. A videohálózattal végzett forgalomfigyelés és -irányítás csökkenti a dugók kialakulásának esélyét és javítja a forgalom áramlását.

Oktatás
Az óvodáktól kezdve az egyetemekig az IP-videohálózatok képesek a vandalizmus visszaszorítására, és a személyzet, valamint a diákok biztonságának növelésére. A meglevő IP-infrastrúktura kihasználásával nincs szükség további kábelezésre. A mozgásérzékeléshez hasonló szolgáltatások olyan eszközökkel ruházzák fel a biztonsági személyzetet, amelyek révén tevékenységük egyszerűbbé válik, és elkerülhetők a téves riasztások. A távoktatás egy másik izgalmas alkalmazási terület például olyan hallgatók számára, akik nem tudnak személyesen részt venni az előadásokon.

Ipar
A hálózati videorendszereket számos ipari alkalmazásban használják, például gyártósorok és folyamatok távoli megfigyeléséhez, az automatizált gyártási rendszerek teljesítményének javításához, valamint a balesetek észleléséhez és az épületek körüli területek biztosításához. A hálózati videorendszerek virtuális konferenciák szervezésére, valamint távoli technikai támogatás és karbantartás céljára is használhatók.

Hálózati videomegoldások tervezése és alkalmazása a különféle

Gyártósorok megfigyelésére is alkalmasak a hálózati videorendszerek

Térfigyelő-rendszerek

A hálózati videorendszerek alapvető szerephez jutnak a bűnözés visszaszorításában és a társadalom védelmében. Vészhelyzetekben a hálózati kamerák segítségével a rendőrség és a tűzoltóság is gyorsabban reagálhat. A fejlettebb hálózati kamerák borotvaéles, részletes képeket jelenítenek meg, mozgásérzékelést végeznek, és ellenállnak a szabotázskísérleteknek is. A vezetékes és vezeték nélküli hálózatokkal műkodő kamerák ideális és kiemelten költséghatékony eszközök a városok biztonságának megőrzéséhez.

Hálózati videomegoldások tervezése és alkalmazása a különféle

A térfigyelő-rendszerek kiépítése visszaszorítja a bűnözést

Kormányzat
A hálózati videorendszerek bármilyen középület védelmére alkalmasak a múzeumoktól és irodáktól kezdve a könyvtárakon át a börtönökig bezárólag. Az épületek behatolási pontjainak megfigyelésével és a folyamatos távoli figyelés alkalmazásával az IP-kamerák a személyzet és a látogatók biztonságát is növelik. A vandalizmus visszaszorítására és a látogatókkal kapcsolatos statisztikai adatok rögzítésére is képesek.

Egészségügy
A hálózati videorendszerek költséghatékony, magas színvonalú betegfelügyeleti és videomegfigyelési megoldasokat kínálnak, amelyek egyaránt javítják a személyzet, a betegek, a látogatók, továbbá az anyagi javak biztonságát. Az erre feljogosított kórházi biztonsági személyzet több helyről származó élő képeket figyelhet, észlelheti a tevékenységeket, távoli segítségnyújtást adhat, illetve számos egyéb szolgáltatást használhat feladatai elvégzésére.

Bank- és pénzügy
A meglévő CCTV-berendezésekből és -rendszerekből kiindulva modern hálózati videomegfigyelő-rendszerek alakíthatók ki, amelyek kiváló képminőséget és hasznos eseménykezelési szolgáltatásokat biztositanak. A biztonsági személyzet egy központi vagy mobil megfigyelőpontról számos helyszínt tarthat szemmel, egyszerűen ellenőrizheti a riasztásokat, és gyorsan reagálhat azokra.

Forrás: Axis Communications
aspectis.hu

Hálózati kamerák

Hálózati kamerák

Megnőtt az aggodalom a köz- és magánbiztonsággal kapcsolatban, ennek és a technológiai változásoknak köszönhetően virágzik a videomegfigyelési piac. Egyre többen állnak át a hálózati videorendszerekre, a felhasználók kihasználják a rugalmas, nyílt, ipari szabványokon alapuló biztonsági- és videomegfigyelési rendszerek adta lehetőségeket.

Hálózati kamerával bármit, bárhonnan, bármikor szemmel lehet tartani. A hálózati kamerák lehetővé teszik élő videoképek rögzítését és megtekintését a világ bármely pontjáról. A nyílt szabványokon alapuló készülékek önállóan működnek, és bárhol elhelyezhetők, ahol van elérhető IP-kapcsolat. A képek videokezelő szoftverrel vagy akár valamely böngészővel is megtekinthetők. A nappal és éjszaka, illetve kültéren és beltérben egyaránt használható kamerákkal, valamint a vezeték nélküli, a rongálás ellen védett és a HDTV/megapixeles felbontású hálózati kamerákkal több cég is teljes körű portfóliót kínál. Legyen szükség akár professzionális video-megfigyelőmegoldásra személyek és helyszínek biztosításához, illetve vagyontárgyak és létesítmények távoli felügyeletéhez, a hálózati videorendszer minden esetben kielégíti a felhasználók igényeit.

A hálózati kamerák általános jellemzői

  • Kiváló képminőség.
  • Nagy felbontású videoanyag – élőben és a felvételen is.
  • HDTV és megapixeles termékek.
  • Közvetlen kapcsolódás vezetekes vagy vezeték nélküli IP-hálózatokhoz.
  • Hatékony esemény- és riasztáskezelés.
  • Beépített intelligens funkciók, például mozgásérzékelés, szabotázsérzékelés.
  • H.264, MPEG-4 es Motion JPEG technológiát alkalmazó termékek.
  • Számos biztonsági funkció, például többszintű jelszavas védelem, IP-címek szűrése, HTTPS-titkosítás.
  • Hatékony kezelőeszközök a távolból történő konfiguráláshoz és állapotlekérdezéshez.
  • Hatékony API (VAPIXR) a szoftverintegráció érdekében.
  • IPv6 protokollt és QoS (szolgáltatási minőség) megoldást alkalmazó termékek.
  • Többnyelvű felhasználói kezelőfelülettel rendelkező termékek.

 

Hálózati kamerák

Hálózati kamerák rendszerének fölépítése

A hálózati kamerák használatának előnyei

  • Élő vagy felvett videoanyag távoli elérése – bármikor, bárhonnan, bármely erre jogosult számítógépről.
  • Digitális képminőség a tökéletes megtekintéshez.
  • Tisztább képek mozgó személyekről és tárgyakról a progresszív letapogatásnak köszönhetően.
  • Nyílt IP-szabványokon alapuló, skálázható és továbbfejleszthető rendszerek.
  • Egyszerű integráció más rendszerekkel, például beléptető- és pénztári rendszerekkel.
  • Hatékony, központilag végzett rendszerkezelés, csökkentett fenntartási költségek.
  • Rugalmas, költséghatékony, akár ipari mértékű videomegfigyelési megoldások.
  • Háttértámogatás az iparág legnagyobb videoszoftver-bázisaitól.

 

Hálózati kamerák

Összekapcsolható a beléptető- és pénztári rendszerekkel

A hálózati kamerák típusai
A hálózati kamerák világszerte elérhető széles választékban kaphatók. Ezek az eszközök kiváló minőségű videomegoldások megvalósítását teszik lehetővé bármilyen professzionális bel- és kültéri videomegfigyelési alkalmazásban.

Fix hálózati kamerák
A fix hálózati kamerák számos alkalmazási környezet igényeit elégítik ki, ráadásul hagyományos külsejük már önmagában is figyelemfelkeltő (adott esetben „elrettentő”) hatású. A megfigyelés irányát a kamera felszerelését követően kell beállitani. A rugalmas felhasználás érdekében néhány típus varifokális objektívvel és/vagy cserélhető objektívvel rendelkezik. Kameraház is rendelhető a termékekhez, ha a kamerát kültéren vagy káros hatásoknak kitett környezetben kell felszerelni.

Fix dóm hálózati kamerák
A fix dóm hálózati kamerák kompakt kialakítású megoldások, amelyek félgömb alakú házban vannak elhelyezve. Legfőbb előnyük a diszkrét, környezetbe olvadó külsejük, valamint az a tény, hogy megfigyelési irányuk a külső szemlélő számára nehezen látható. Az ilyen kamerák dómháza hatékony védelmet nyújt, mivel illetéktelenek nem tudják a kamera irányát vagy fókuszát megváltoztatni.

PTZ hálózati kamerák
A PTZ hálózati kamerák hálózati videofunkciókat kínálnak forgatási (pan), döntési (tilt) és zoomolási képességekkel kiegészítve. Ezek a kamerák könnyen mozgathatok a hálózathoz csatlakoztatott számítógép segítségével. Az adott alkalmazási környezettől függ, hogy melyik kivitel a legcélszerűbb választás: vannak olyan PTZ hálózati kamerák, amelyeknél jól látható a kamera mozgása és iránya; más típusok esetén a mozgó részek a borításon belül kaptak helyet, így kevesbé feltűnő a működésük; sőt, van olyan típus is, amelynek egyáltalan nincsenek mozgó alkatrészei.

PTZ dóm hálózati kamerák
A PTZ dóm hálózati kamerák teljes szabadságot kínálnak, mivel 360 fokban forgathatók (pan), 180 fokban dönthetők (tilt), széles határok közti zoomolásra képesek, ráadásul fejlett mechanikai kialakításuknak köszönhetően folyamatos mozgásra is képesek. A PTZ dómkamerák ideális megoldást jelentenek olyan megfigyelési helyzetekben, amikor a felhasználónak aktívan követnie kell a célszemély vagy céltárgy mozgását. Ezen kívül „őrjárat” üzemmódban is működtethetők: ilyenkor a kamera automatikusan mozog az előre beprogramozott helyzetek között.

Hálózati hőkamerák
A hálózati hőkamerák a tárgyakból, járművekből és emberekből folyamatosan sugárzó hő alapján hoznak létre képeket. A kamerák teljes sötétségben is képesek olyan minősegű képek készítésére, amelyek segítségével az üzemeltetők a nap 24 órájában, minden körülmények között észlelhetik a gyanús tevékenységeket, és megfelelően reagálhatnak azokra. A hálózati hőkamerák kitűnő kiegészítői bármilyen professzionális IP alapú megfigyelőrendszernek.

aspectis.hu

Intelligens videó

Intelligens videó

Napjainkban nagy mennyiségű videoanyagot rögzítenek, amelyet azután időhiány miatt soha sem néznek meg, nem ellenőriznek. Így azután fontos eseményeket mulasztanak el, nem vesznek észre időben gyanús viselkedést, és így nem is lehet azokat megelőzni. Ezek az okok vezettek az intelligens videó kifejlesztéséhez.

Az intelligens videó fogalma magában foglal mindenféle megoldást, amelyben a videomegfigyelő-rendszer automatikusan végez elemzéseket a rögzített videóban. Ilyenek például a video-mozgásérzékelés, audióérzékelés, sőt fejlettebb rendszerek, mint emberszámlálás, virtuális kerítés, járművek rendszám-azonosítása. Minden olyan folyamat, amely során a kamera normál működését próbálják megakadályozni. Ilyen és ehhez hasonló elemzéseket végző alkalmazásokat gyakran video-tartalomelemzéseknek (Video Content Analysis) vagy videoelemzéseknek (Video Analytics) nevezzük.

Mi is az intelligens videó?
Az intelligens videó azt jelenti, hogy csökkentjük az adott videóban található hatalmas mennyiségű információt, vagyis kezelhetőbbé tesszük az emberek és a rendszerek számára. Ha ilyen elemzéseket építünk hálózati kamerákba, akkor sokoldalúbb és megbízhatóbb videomegfigyelő-rendszerek kapunk. Ezzel együtt drasztikusan csökkenthető az alkalmazottak munkaterhe. Az intelligens hálózati kamera soha sem tétlen, napi 24 órán keresztül támogatja a kezelőt. Folytonosan figyel, valamilyen impulzusra vár, hogy rögzíteni kezdjen vagy riassza a kezelőt. Ezen felül az intelligens videorendszerek adatokat emelnek ki a videomegfigyelési stream-ekből, és más alkalmazásokkal integrálják az információkat, mint például kereskedelmi menedzsmentrendszerek vagy beléptetőrendszerek. Ezzel új üzleti lehetőségeket nyílnak meg.

Fárasztó a kezelő számára órákon át nézni a monitorokat

Előnyök
Itt az „intelligencia” a videoképek elemzését jelenti, majd a kapott adatok automatikus felhasználását. A rendszereknek számos előnye ismert:

  • Hatékonyabb munkaerő felhasználás: a nagyméretű videomegfigyelő-rendszerek hatékonyságát korlátozza, hogy a kezelő számára fárasztó órákon át nézni a sok monitort, közben pedig fölfigyelni valamennyi váratlan eseményre. Az intelligens videomegoldásokkal egyszerre sok kamera képe is megfigyelhető. Így nem kell egyszerre sok monitort nézni órákon át, hogy a megfigyelő észrevegye a nem kívánt eseményeket. Ha történik valami, akkor az intelligens videorendszer értesíti a kezelőt, például, olyankor, amikor zárt területen mozog valaki, rossz irányba halad egy autó, esetleg valaki megkísérli a kamerát elmozdítani, megrongálni vagy lefedni.
  • Gyorsabb keresés a rögzített videóban: hagyományos esetben az adott esemény után nagyon időigényes a tárolt videó átnézése, mivel a kezelőnek az egész anyagot kell végig néznie. Emiatt a tárolt videót archiválják vagy egyszerűen törlik. Viszont az intelligens videóval csak a fontos anyagot tárolják, mivel az csak akkor rögzít, amikor mozgás van. Így ha át kell nézni a régi felvételeket csak olyan videót szükséges megtekinteni, amelyen ténylegesen megtalálható a kérdéses esemény. Mivel a felvétel során a videostream-et felcímkézik, az intelligens videorendszerek több napnyi anyagban is pár másodperc alatt automatikusan tudnak keresni.
  • Csökkentett hálózati teher és tárolási követelmények: az intelligens videorendszerek videó- és audió-mozgásérzékeléssel rendelkeznek. Mivel csak akkor rögzítenek, ha tényleg történik valami, sokkal kevesebb tárhelyet igényelnek. Ha magát az intelligens hálózati kamerát a folyamat elejére tesszük, akkor pedig a hálózat terhelése is csökken, mivel annyi anyagot dolgoz fel a kamera, amennyit csak lehet, így csak lényeges felvétel áramlik a kamerákból. Így költséghatékonyan lehet megfigyelőrendszereket építeni.
  • Új üzleti lehetőségek: az intelligens videó a biztonságtechnika területén kívül is használható különböző alkalmazásokban. Például kereskedelmi egységekben tudják a vásárlók szokásait figyelni – vevőútvonal-elemzés, sok ember áll meg egy adott polcnál. A rendszer a repülőtereken a check-in pultnál számolni tudja sorban állás idejét, ezzel irányítja az alkalmazottakat, hogy csökkentség az utazók várakozási idejét. Egyszerű megfigyelőrendszerrel gyorsabban térül meg a befektetés.

 

Intelligens video

Számos kereskedelmi alkalmazása van az intelligens videónak

Rendszertervezés
Két széles körű rendszerkategóriát ismerünk, ahol az intelligens videó megvalósítható: a centralizált és a disztributált.

  • A centralizált – központosított – szerkezetben a videót és a többi információt a kamera és a szenzorok gyűjtik össze és továbbítják a központi szervernek elemzésre.
  • A disztributált – szétosztott – szerkezetben, a rendszer „peremén” lévő eszközök az intelligensek (hálózati kamerák és videoszerverek), amelyek képesek videót felvenni, és a hasznos információkat kiszűrni.

Ezen felül érdemes megfontolni, hogy a rendszer engedje-e más gyártó különböző alkalmazásait integrálni.

Megfontolásra ajánlott szempontok

  • Megbízhatóság és rendszerelérhetőség – minimalizálni kell a rendszerhibát és üzemszüneti időt.
  • Skálázhatóság és rugalmasság – olyan képesség, amellyel gond nélkül lehet skálázni a néhány vagy akár sokkamerás rendszert.
  • Együttműködési képesség – amellyel különböző gyártótól tudunk rendszerkomponenseket használni.
  • Biztonság – biztosítani, hogy csak a megfelelő engedéllyel rendellkező személyek használják a rendszert.
  • Teljes bekerülési költség (TCO) – magába foglalja a rendszer elemeinek és működésének költségeit.

A kamerákba épített intelligens videó olyan nyitott platformot biztosít, amely lehetővé teszi bármiféle kisebb szoftver fejlesztését az adott kamerákhoz. Ez a technológia lehetővé teszi, hogy bármely külső szoftvert, videoelemző alkalmazást használjunk a kameránkban, akár saját fejlesztésű alkalmazásainkat is. A legfontosabb technikai forradalom ezen a téren az, hogy magában a kamerában végezzük az elemzést, semmilyen szerverre nincs hozzá szükség. Ez lényegesen felgyorsítja az elemzést, és sokkal kevesebb emberi munkára van szükség a területek figyeléséhez. Mivel ez esetben a kamera maga végzi az analízist csökkenthető a hálózati erőforrások használata, így alaposan csökkenthető a biztonsági rendszer költsége.
Legegyszerűbb esetben a kamera SD-kártyára ment, és a telepített intelligens videószoftverekkel elemez. Nekünk már csak egyszerű kliens PC-re vagy laptopra van szükségünk, hogy megfigyeljük, és kezeljük a folyamatokat. Ezzel egy kisebb rendszer egyszerűen és költséghatékonyan kiépíthető. Ezek a kisebb alkalmazások segíthetik más, nagyobb rendszerek szoftvereivel történő integációt és analízist is.

Intelligens videó

Beépített funkciók
A legáltalánosabb példa, amely szinte minden kamerában gyárilag megtalálható, az a mozgásérzékelés (motion detection). Sokkal hatékonyabb lesz a videorögzítés is, ha a mozgásérzékelésre nem csak riasztást állítunk be, hanem mentést is. Mivel nem rögzítünk eseménymentes állapotot, a háttértárolóra rögzített videoanyag lényegesen hosszabb lehet. A video-mozgásérzékelés az alapja számos fejlettebb videoelemző programnak, mint emberszámlálás, digitáliskerítés, tárgykövetés.

Intelligens videó

Mozgásérzékelés

Az újabb kamerákba gyárilag beprogramozott a rongálás érzékelő funkció (camera tampering alarm). Ez a funkció a kamera rongálását, lefedését, eltakarását hivatott érzékelni. Ebben az esetben amint a kezelő érzékeli a cselekményt, rögtön intézkedhet a kamera tisztításáról (ha lefedték) vagy pótlásáról (ha kárt okoztak benne). Ha a megfigyelt területen biztonsági őr is tartózkodik, akkor pedig lényegesen hatékonyabbá válhat a kár okozójának elfogása, mivel a diszpécser az érzékelt kárról azonnal értesítést kap, és ezt rögtön közölni is tudja a biztonsági szolgálati munkatársával.

Intelligens video

Rongálás érzékelő

Az áthaladás számláló funkció (cross line detection) segítségünkre lehet ajtókon való áthaladás számlálásában vagy nagyobb üzletekben a vásárlási szokások feltérképezésére. A működési elve a következő: adott kamerán meghatározott virtuális vonalat hozunk létre, amelyen az egy bizonyos irányba haladó objektumokat számláljuk. Egy kamera streamen egyszerre nem csak egy vonalat helyezhetünk el, így esetlegesen egy ajtón számlálhatjuk egyszerre a kifelé és befelé haladó forgalmat is.

Intelligens videó

Áthaladás számláló

Az objektumkövető funkció (auto tracking) alkalmas bármi követésére, ami a kamera képén áthalad. A funkció mindaddig tökéletesen működik, ameddig a képünkben csak egy objektum tartózkodik. Ha esetlegesen a képben több van, a kamera automatikusan a legnagyobbat (legtöbb pixelt tartalmazó) objektumot fogja követni.
A hangérzékelő funkció (audio detection) akkor alkalmazható, ha a kamera által figyelt terület esetlegesen nehezen látható. Ebben az esetben a kamerában riasztás generálódik egy bizonyos hangerő fölött. Ez lehet bármilyen hang vagy zaj, amely elég hangos ahhoz, hogy a beállított érzékenységet elérje. Ebben a pillanatban a kamera jelez a kezelőnek és/vagy elindul a rögzítés. Az audióérzékelés helyettesítheti a mozgásérzékelést, mivel olyan helyszíneken is reagál eseményekre, ahol túl sötét van a mozgásérzékeléséhez vagy, ha nem a kamera látószögében történik az eset. A rendszer működéséhez szükséges, hogy a kamerában legyen audiotámogatás, és vagy beépített mikrofonnal, vagy külső hozzákapcsolt mikrofonnal rendelkezzen.

Különböző cégek már számos analizáló modult fejlesztettek. Ezek nem feltétlenül biztonságtechnikai célra készültek, bármiféle analitikára könnyen írható applikáció. Általában a legtöbb modulért fizetni kell, de előtte lehetőség van a tesztelésre.

Forrás: aspectis.hu

Íriszazonosítás (Forrás: naukaipostep.pl)

Íriszazonosítás

Mindenkinek egyéni jellemzője az írisz rajzolata, ezen alapul az íriszazonosítás, mint biometrikus azonosítási módszer. Az íriszazonosítás biometrikus azonosításra használt matematikai mintafelismerési technika, amely során videoképet készítenek a szemről, és abból egyedi jellemzők alapján állítják össze az azonosításra szolgáló adatsort. Létezik egy másik, kevésbé elterjedt szemalapú technológia is, a retinaszkennelés.

Az íriszazonosítás során infravörös megvilágítás mellett készítenek képet kamerával a részletgazdag, bonyolult szerkezetű szivárványhártyáról. Majd digitálisan kódolt minták alapján, matematikai és statisztikai algoritmusokkal készíti el az íriszazonosító berendezés az egyénre jellemző adatsort. Utána azt összeveti az adatbázisában tárolt íriszadatokkal, és azonosítja az egyént. Ez a módszer az egyik legnagyobb a pontosságú azonosítás, gyakorlatilag egyértelműen képes megállapítani, hogy az egyén szerepel-e az adatbázisában. Az íriszazonosítás legfontosabb előnye a gyorsaság mellett a pontossága – a szivárványhártya stabilitásának köszönhetően –, mivel a szem belső, védett, mégis kívülről látható szervünk.

Számos ország használja az íriszt polgárai azonosítására. Sőt szerte a világon kényelmi okokból már több millióan szerepelnek egy íriszazonosítási rendszerben, amely segítségével útlevél nélkül átkelhetnek határokon.
Az íriszazonosítás alapjául szolgáló algoritmust John Daugman professzor (University of Cambridge Computer Laboratory) fejlesztettek ki az 1990-es években. Bár az íriszazonosítás nagyon aktív kutatási téma a számítástechnika, a műszaki tudományok, a statisztika és az alkalmazott matematika területén, a mai napig Daugman algoritmusát használják a gyártók az íriszazonosító rendszerekben.

Íriszazonosítás (Forrás: en.wikipedia.org)

Látható fény (VW) vagy közeli infravörös hullám (NIR)?

A legtöbb íriszazonosító kamera infravörös fénnyel működik (NIR – tartománya: 750–1050 nm). Azért ezzel, mert a sötét barna szem – ilyen van az emberek többségének –, ebben a fénytartományban mutatja meg gazdag szerkezetét, miközben sokkal kevésbé látszik a látható fény tartományában (400–700 nm), De az is fontos szempont, hogy az infravörös fény láthatatlan és kevésbé tolakodó. Másik fontos ok még, hogy a környezet visszaverődő fényei nen befolyásolják a szivárványhártya mintáit.

Íriszazonosítás   Íriszazonosítás
Az írisz látható fényben   Az írisz képe infravörös fényben (Forrás: en.wikipedia.org)

Működési elv

A szivárványhártya-felismerési algoritmus először lokalizálja a belső és külső határait az írisznek. További szubrutinok észlelik és kizárják szemhéjakat, szempillákat, illetve a tükröződéseket.

 

A szoftver az íriszen meghatározott képpontok keres, miközben ellensúlyozza a pupilla tágulását, szűkülését, azután elemezni majd kódolja a megtalált pontokat, hogy majd összehasonlítsa kapott íriszképet a tároltakkal. Esetenként a Daugman-algoritmusok Gábor Dénes hullám transzformációját használják, az eredmény pedig egy sor komplex szám, amely tartalmazza az íriszminta szakaszait és szélsőértékeit. A Daugman-algoritmus a szélsőértékeket elhagyja, ez biztosítja, hogy a kapott mintát kevéssé befolyásolják a megvilágítás vagy a kamera kontrasztjának változásai, és ezzel válik hosszú távon használhatóvá a biometrikus minta. Az azonosításkor (egy a sokhoz mintaillesztés), illetve annak ellenőrzése során (egy az egyhez mintaillesztés) az íriszmintát összehasonlítja a készülék a tárolt mintával az adatbázisban. Ha a döntési küszöb Hamming-távolság alatt van (Hamming-távolság – két azonos hosszúságú bináris jelsorozat eltérő bitjeinek száma), a jelsorozat hossza garantálja, hogy két különböző személy íriszmintája különböző legyen.

Előnyök

Az írisz több okból is ideális az emberi test biometrikus azonosítására:

  • Belső szerv, ezért sérülésektől és a kopástól védi az érzékeny, átlátszó membrán, a szaruhártya. Ellentétben az ujjlenyomatokkal, amelyek felismerése évek múltával egyre nehezebbé válik, különösen nehéz bizonyos fizikai munkák végzése esetén.
  • Az írisz alakja kiszámítható: többnyire sík, és helyzetét csak két, egymást kiegészítő izom (a záró- és nyitópupilla) változtatja. Ez teszi az írisz alakját sokkal használhatóbbá, mint, például az arcot.
  • Az írisz finom rajzolata és az ujjlenyomat véletlenszerűen alakul ki a terhesség során az embrionális korban. Akárcsak az ujjlenyomat esetében, nagyon nehéz – ha nem lehetetlen – az írisz egyediségének bizonyítására. Sok tényező befolyásolja az írisz és az ujjlenyomat a szerkezete kialakulását, ezért a téves azonosítás esélye rendkívül alacsony, ismert, hogy még a genetikailag azonos egypetéjű ikrek esetében is teljesen különböző az írisz szerkezete.
  • Az íriszazonosítás hasonló a fényképezéshez, így elvégezhető akár10 centiméteres távolságról, akár néhány méterről. Nem szükséges, hogy az azonosítani kívánt személy hozzáérjen egy olyan berendezéshez, amelyhez előtte más is hozzáért – ez bizonyos kultúrákban kizárja az ujjlenyomat-azonosítást –, vagy mint retinaszkennelés esetében, ahol a szemet kell nagyon közel vinni a lencséhez, mint a mikroszkóp esetében.
  • Rendkívül magas az azonosítás biztonsága.
  • Az írisz finom szerkezete rendkívül stabil akár több évtizeden át. Már előfordult 30 éves íriszminta azonosítása is.

 

Forrás
en.wikipedia.org

Okostelefonok, mint mobil beléptető kártyák

Okostelefonok, mint mobil beléptető kártyák

Az Assa Abloy leányvállalatai a HID Global és a Yale Locks & Hardware a 2012-es Consumer Electronics Show-n, Las Vegas-ban bemutatták terveiket az NFC-szabvány alkalmazási lehetőségeire vonatkozóan a beléptetés területén.

A cégcsoport a Verizon Wireless-t választotta partnerének, hogy elkészítse a lakossági felhasználók számára is elérhető mobilalkalmazást, amellyel nyithatóvá válnak majd a HID beléptetőivel működő Yale zárak. A rendszert az NFC-technológiát (Near field communication) használó okostelefonok számára fejlesztik ki.

Az NFC rövid hatótávolságú vezeték nélküli kommunikációs technológiai szabvány, amely akár 10 centiméteres távolságban is lehetővé teszi az adatcserét az eszközök között. A szabvány számos területen alkalmazható, így például beléptetésre, jegyvásárlásra, fizetésre, internetes tartalmak elérésére, valamint a tömegközlekedésben is használható.

Forrás: hidglobal.com

Nő a videomegfigyelő rendszerek piaca

Várhatóan több mint 25 százalékkal nő a hálózati videotermékek értékesítése

Az elmúlt évek pénzügyi válsága és a globális recesszió ellenére az IMS Research tanulmánya szerint várhatóan magas marad a videofelügyeleti rendszerek iránti kereslet világszerte.

A videomegfigyelő rendszerek piacának növekedése két tényezőből következi: állítja az IMS: egyrészt nem csökkent a videofelügyeleti berendezések iránti igény, másrészt a recesszió nem minden országban egyformán befolyásolta a piacot. Emellett a hálózati videomegfigyelő eszközök piaca várhatóan továbbra is erősödik, előre láthatóan több mint 25 százalékkal. Az IMS tanulmánya azt állítja, hogy a gazdasági visszaesés ellenére is továbbra is folytatódik az áttérés az IP-videotechnológiára, sőt ez erősíti a többi videoberendezés értékesítését is.

IMS vezető elemzője Gary Wong elmondta, reméli, hogy a teljes piac 2012-ben is nőni fog. Majd hozzátette, a videomegfigyelő berendezések piacát meghatározza a BRIC országokban (Brazília, Oroszország, India és Kína) tapasztalható tartós és erős a kereslet a hálózati rendszerek iránt. A BRIC piacon 2012-ben a növekedés várhatóan meghaladja a 30 százalékot – tette hozzá az elemző.

„Egyes, a többinél jobb helyzetben levő piaci szereplők megbirkóznak a várható másodlagos recesszióval. Ezek azok a gyártók lesznek, amelyek erősen fokuszálnak arra, hogy a regionális kockázatcsökkentés érdekében növeljék portfóliójukat, beruháznak a fejlődő márkákba, és kiépítsék értékesítési hálózatukat a feltörekvő piacokon, mert rugalmasnak kell lenniük az eurózóna esetleges összeomlása esetén is” – tette hozzá Wong.

Forrás: IPSecurityWatch.com

Lap teteje